
- Reformated net.self_x functions (sa, st) - corrected robustness_exp.py - NO DEBUGGING DONE!!!!!
180 lines
7.1 KiB
Python
180 lines
7.1 KiB
Python
import random
|
|
import os.path
|
|
import pickle
|
|
|
|
from tqdm import tqdm
|
|
|
|
from experiments.helpers import check_folder, summary_fixpoint_percentage, summary_fixpoint_experiment
|
|
from functionalities_test import test_for_fixpoints
|
|
from network import Net
|
|
from visualization import plot_loss, bar_chart_fixpoints, plot_3d_soup, line_chart_fixpoints
|
|
|
|
|
|
class SoupExperiment:
|
|
def __init__(self, population_size, net_i_size, net_h_size, net_o_size, learning_rate, attack_chance,
|
|
train_nets, ST_steps, epochs, log_step_size, directory_name):
|
|
super().__init__()
|
|
self.population_size = population_size
|
|
|
|
self.net_input_size = net_i_size
|
|
self.net_hidden_size = net_h_size
|
|
self.net_out_size = net_o_size
|
|
self.net_learning_rate = learning_rate
|
|
self.attack_chance = attack_chance
|
|
self.train_nets = train_nets
|
|
# self.SA_steps = SA_steps
|
|
self.ST_steps = ST_steps
|
|
self.epochs = epochs
|
|
self.log_step_size = log_step_size
|
|
|
|
self.loss_history = []
|
|
|
|
self.fixpoint_counters = {
|
|
"identity_func": 0,
|
|
"divergent": 0,
|
|
"fix_zero": 0,
|
|
"fix_weak": 0,
|
|
"fix_sec": 0,
|
|
"other_func": 0
|
|
}
|
|
# <self.fixpoint_counters_history> is used for keeping track of the amount of fixpoints in %
|
|
self.fixpoint_counters_history = []
|
|
|
|
self.directory_name = directory_name
|
|
os.mkdir(self.directory_name)
|
|
|
|
self.population = []
|
|
self.populate_environment()
|
|
|
|
self.evolve()
|
|
self.fixpoint_percentage()
|
|
self.weights_evolution_3d_experiment()
|
|
self.count_fixpoints()
|
|
self.visualize_loss()
|
|
|
|
def populate_environment(self):
|
|
loop_population_size = tqdm(range(self.population_size))
|
|
for i in tqdm(range(self.population_size)):
|
|
loop_population_size.set_description("Populating soup experiment %s" % i)
|
|
|
|
net_name = f"soup_network_{i}"
|
|
net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name)
|
|
self.population.append(net)
|
|
|
|
def evolve(self):
|
|
""" Evolving consists of attacking & self-training. """
|
|
|
|
loop_epochs = tqdm(range(self.epochs))
|
|
for i in loop_epochs:
|
|
loop_epochs.set_description("Evolving soup %s" % i)
|
|
|
|
# A network attacking another network with a given percentage
|
|
chance = random.randint(1, 100)
|
|
if chance <= self.attack_chance:
|
|
random_net1, random_net2 = random.sample(range(self.population_size), 2)
|
|
random_net1 = self.population[random_net1]
|
|
random_net2 = self.population[random_net2]
|
|
print(f"\n Attack: {random_net1.name} -> {random_net2.name}")
|
|
random_net1.attack(random_net2)
|
|
|
|
# Self-training each network in the population
|
|
for j in range(self.population_size):
|
|
net = self.population[j]
|
|
|
|
for _ in range(self.ST_steps):
|
|
net.self_train(1, self.log_step_size, self.net_learning_rate)
|
|
|
|
# Testing for fixpoints after each batch of ST steps to see relevant data
|
|
if i % self.ST_steps == 0:
|
|
test_for_fixpoints(self.fixpoint_counters, self.population)
|
|
fixpoints_percentage = round((self.fixpoint_counters["fix_zero"] + self.fixpoint_counters["fix_weak"] +
|
|
self.fixpoint_counters["fix_sec"]) / self.population_size, 1)
|
|
self.fixpoint_counters_history.append(fixpoints_percentage)
|
|
|
|
# Resetting the fixpoint counter. Last iteration not to be reset - it is important for the bar_chart_fixpoints().
|
|
if i < self.epochs:
|
|
self.reset_fixpoint_counters()
|
|
|
|
def weights_evolution_3d_experiment(self):
|
|
exp_name = f"soup_{self.population_size}_nets_{self.ST_steps}_training_{self.epochs}_epochs"
|
|
return plot_3d_soup(self.population, exp_name, self.directory_name)
|
|
|
|
def count_fixpoints(self):
|
|
test_for_fixpoints(self.fixpoint_counters, self.population)
|
|
exp_details = f"Evolution steps: {self.epochs} epochs"
|
|
bar_chart_fixpoints(self.fixpoint_counters, self.population_size, self.directory_name, self.net_learning_rate,
|
|
exp_details)
|
|
|
|
def fixpoint_percentage(self):
|
|
runs = self.epochs / self.ST_steps
|
|
SA_steps = None
|
|
line_chart_fixpoints(self.fixpoint_counters_history, runs, self.ST_steps, SA_steps, self.directory_name,
|
|
self.population_size)
|
|
|
|
def visualize_loss(self):
|
|
for i in range(len(self.population)):
|
|
net_loss_history = self.population[i].loss_history
|
|
self.loss_history.append(net_loss_history)
|
|
|
|
plot_loss(self.loss_history, self.directory_name)
|
|
|
|
def reset_fixpoint_counters(self):
|
|
self.fixpoint_counters = {
|
|
"identity_func": 0,
|
|
"divergent": 0,
|
|
"fix_zero": 0,
|
|
"fix_weak": 0,
|
|
"fix_sec": 0,
|
|
"other_func": 0
|
|
}
|
|
|
|
|
|
def run_soup_experiment(population_size, attack_chance, net_input_size, net_hidden_size, net_out_size,
|
|
net_learning_rate, epochs, batch_size, runs, run_name, name_hash, ST_steps, train_nets):
|
|
experiments = {}
|
|
fixpoints_percentages = []
|
|
|
|
check_folder("soup")
|
|
|
|
# Running the experiments
|
|
for i in range(runs):
|
|
directory_name = f"experiments/soup/{run_name}_run_{i}_{str(population_size)}_nets_{epochs}_epochs_{str(name_hash)}"
|
|
|
|
soup_experiment = SoupExperiment(
|
|
population_size,
|
|
net_input_size,
|
|
net_hidden_size,
|
|
net_out_size,
|
|
net_learning_rate,
|
|
attack_chance,
|
|
train_nets,
|
|
ST_steps,
|
|
epochs,
|
|
batch_size,
|
|
directory_name
|
|
)
|
|
pickle.dump(soup_experiment, open(f"{directory_name}/full_experiment_pickle.p", "wb"))
|
|
experiments[i] = soup_experiment
|
|
|
|
# Building history of fixpoint percentages for summary
|
|
fixpoint_counters_history = soup_experiment.fixpoint_counters_history
|
|
if not fixpoints_percentages:
|
|
fixpoints_percentages = soup_experiment.fixpoint_counters_history
|
|
else:
|
|
# Using list comprehension to make the sum of all the percentages
|
|
fixpoints_percentages = [fixpoints_percentages[i] + fixpoint_counters_history[i] for i in
|
|
range(len(fixpoints_percentages))]
|
|
|
|
# Creating a folder for the summary of the current runs
|
|
directory_name = f"experiments/soup/summary_{run_name}_{runs}_runs_{str(population_size)}_nets_{epochs}_epochs_{str(name_hash)}"
|
|
os.mkdir(directory_name)
|
|
|
|
# Building a summary of all the runs
|
|
summary_pre_title = "soup"
|
|
summary_fixpoint_experiment(runs, population_size, epochs, experiments, net_learning_rate, directory_name,
|
|
summary_pre_title)
|
|
SA_steps = None
|
|
summary_fixpoint_percentage(runs, epochs, fixpoints_percentages, ST_steps, SA_steps, directory_name,
|
|
population_size)
|
|
|