Dataset Redone
This commit is contained in:
@@ -1,89 +0,0 @@
|
||||
import pickle
|
||||
from collections import defaultdict
|
||||
|
||||
from abc import ABC
|
||||
from pathlib import Path
|
||||
|
||||
from torch.utils.data import Dataset, ConcatDataset
|
||||
from ml_lib.point_toolset.sampling import FarthestpointSampling, RandomSampling
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
class _Point_Dataset(ABC, Dataset):
|
||||
|
||||
@property
|
||||
def name(self):
|
||||
raise NotImplementedError
|
||||
|
||||
@property
|
||||
def sample_shape(self):
|
||||
# FixMe: This does not work when more then x/y tuples are returned
|
||||
return self[0][0].shape
|
||||
|
||||
headers = ['x', 'y', 'z', 'xn', 'yn', 'zn', 'label', 'cl_idx']
|
||||
samplers = dict(fps=FarthestpointSampling, rnd=RandomSampling)
|
||||
|
||||
def __init__(self, root=Path('data'), norm_as_feature=True, sampling_k=2048, sampling='rnd',
|
||||
transforms=None, load_preprocessed=True, split='train', *args, **kwargs):
|
||||
super(_Point_Dataset, self).__init__()
|
||||
|
||||
self.setting: str
|
||||
self.split = split
|
||||
self.norm_as_feature = norm_as_feature
|
||||
self.load_preprocessed = load_preprocessed
|
||||
self.transforms = transforms if transforms else lambda x: x
|
||||
self.sampling_k = sampling_k
|
||||
self.sampling = self.samplers[sampling](K=self.sampling_k)
|
||||
self.root = Path(root)
|
||||
self.raw = self.root / 'raw' / self.split
|
||||
self.processed_ext = '.pik'
|
||||
self.raw_ext = '.xyz'
|
||||
self.processed = self.root / self.setting
|
||||
self.processed.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
self._files = list(self.raw.glob(f'*{self.setting}*'))
|
||||
|
||||
def _read_or_load(self, item):
|
||||
raw_file_path = self._files[item]
|
||||
processed_file_path = self.processed / raw_file_path.name.replace(self.raw_ext, self.processed_ext)
|
||||
|
||||
if not self.load_preprocessed:
|
||||
processed_file_path.unlink(missing_ok=True)
|
||||
if not processed_file_path.exists():
|
||||
pointcloud = defaultdict(list)
|
||||
with raw_file_path.open('r') as raw_file:
|
||||
for row in raw_file:
|
||||
values = [float(x) for x in row.strip().split(' ')]
|
||||
for header, value in zip(self.headers, values):
|
||||
pointcloud[header].append(value)
|
||||
for key in pointcloud.keys():
|
||||
pointcloud[key] = np.asarray(pointcloud[key])
|
||||
with processed_file_path.open('wb') as processed_file:
|
||||
pickle.dump(pointcloud, processed_file)
|
||||
return processed_file_path
|
||||
|
||||
def __len__(self):
|
||||
raise NotImplementedError
|
||||
|
||||
def __getitem__(self, item):
|
||||
processed_file_path = self._read_or_load(item)
|
||||
|
||||
with processed_file_path.open('rb') as processed_file:
|
||||
pointcloud = pickle.load(processed_file)
|
||||
|
||||
position = np.stack((pointcloud['x'], pointcloud['y'], pointcloud['z']), axis=-1)
|
||||
|
||||
normal = np.stack((pointcloud['xn'], pointcloud['yn'], pointcloud['zn']), axis=-1)
|
||||
|
||||
label = pointcloud['label']
|
||||
|
||||
cl_label = pointcloud['cl_idx']
|
||||
|
||||
sample_idxs = self.sampling(position)
|
||||
|
||||
return (normal[sample_idxs].astype(np.float),
|
||||
position[sample_idxs].astype(np.float),
|
||||
label[sample_idxs].astype(np.int),
|
||||
cl_label[sample_idxs].astype(np.int)
|
||||
)
|
||||
@@ -1,19 +0,0 @@
|
||||
import pickle
|
||||
from collections import defaultdict
|
||||
|
||||
import numpy as np
|
||||
|
||||
from ._point_dataset import _Point_Dataset
|
||||
|
||||
|
||||
class FullCloudsDataset(_Point_Dataset):
|
||||
|
||||
split: str
|
||||
name = 'FullCloudsDataset'
|
||||
|
||||
def __init__(self, *args, setting='pc', **kwargs):
|
||||
self.setting = setting
|
||||
super(FullCloudsDataset, self).__init__(*args, **kwargs)
|
||||
|
||||
def __len__(self):
|
||||
return len(self._files)
|
||||
@@ -1,83 +0,0 @@
|
||||
import pickle
|
||||
from collections import defaultdict
|
||||
|
||||
import numpy as np
|
||||
from torch.utils.data import ConcatDataset
|
||||
from tqdm import trange
|
||||
|
||||
from ._point_dataset import _Point_Dataset
|
||||
|
||||
|
||||
class GridClusters(_Point_Dataset):
|
||||
|
||||
split: str
|
||||
name = 'GridClusters'
|
||||
|
||||
def __init__(self, *args, n_spatial_clusters=3*3*3, setting='pc', **kwargs):
|
||||
self.n_spatial_clusters = n_spatial_clusters
|
||||
self.setting = setting
|
||||
super(GridClusters, self).__init__(*args, **kwargs)
|
||||
|
||||
def __len__(self):
|
||||
return len(self._files)
|
||||
|
||||
def _read_or_load(self, item):
|
||||
raw_file_path = self._files[item]
|
||||
processed_file_path = self.processed / raw_file_path.name.replace(self.raw_ext, self.processed_ext)
|
||||
|
||||
if not self.load_preprocessed:
|
||||
processed_file_path.unlink(missing_ok=True)
|
||||
if not processed_file_path.exists():
|
||||
# nested default dict
|
||||
pointcloud = defaultdict(lambda: defaultdict(list))
|
||||
|
||||
with raw_file_path.open('r') as raw_file:
|
||||
for row in raw_file:
|
||||
values = [float(x) for x in row.strip().split(' ')]
|
||||
for header, value in zip(self.headers, values):
|
||||
pointcloud[int(values[-1])][header].append(value)
|
||||
for cluster in pointcloud.keys():
|
||||
for key in pointcloud[cluster].keys():
|
||||
pointcloud[cluster][key] = np.asarray(pointcloud[cluster][key])
|
||||
pointcloud[cluster] = dict(pointcloud[cluster])
|
||||
pointcloud = dict(pointcloud)
|
||||
|
||||
with processed_file_path.open('wb') as processed_file:
|
||||
pickle.dump(pointcloud, processed_file)
|
||||
return processed_file_path
|
||||
|
||||
def __getitem__(self, item):
|
||||
processed_file_path = self._read_or_load(item)
|
||||
|
||||
with processed_file_path.open('rb') as processed_file:
|
||||
pointcloud = pickle.load(processed_file)
|
||||
|
||||
# By number Variant
|
||||
# cl_idx_list = np.cumsum([[len(self) // self.n_spatial_clusters, ] * self.n_spatial_clusters])
|
||||
# cl_idx = [idx for idx, x in enumerate(cl_idx_list) if item <= x][0]
|
||||
|
||||
# Random Variant
|
||||
cl_idx = np.random.randint(0, len(pointcloud))
|
||||
pointcloud = pointcloud[list(pointcloud.keys())[cl_idx]]
|
||||
|
||||
position = np.stack((pointcloud['x'], pointcloud['y'], pointcloud['z']), axis=-1)
|
||||
|
||||
normal = np.stack((pointcloud['xn'], pointcloud['yn'], pointcloud['zn']), axis=-1)
|
||||
|
||||
label = pointcloud['label']
|
||||
|
||||
cl_label = pointcloud['cl_idx']
|
||||
|
||||
sample_idxs = self.sampling(position)
|
||||
while sample_idxs.shape[0] < self.sampling_k:
|
||||
sample_idxs = np.concatenate((sample_idxs, sample_idxs))[:self.sampling_k]
|
||||
|
||||
normal = normal[sample_idxs].astype(np.float)
|
||||
position = position[sample_idxs].astype(np.float)
|
||||
|
||||
normal = self.transforms(normal)
|
||||
position = self.transforms(position)
|
||||
return (normal, position,
|
||||
label[sample_idxs].astype(np.int),
|
||||
cl_label[sample_idxs].astype(np.int)
|
||||
)
|
||||
212
datasets/shapenet.py
Normal file
212
datasets/shapenet.py
Normal file
@@ -0,0 +1,212 @@
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
|
||||
from collections import defaultdict
|
||||
|
||||
import os
|
||||
from tqdm import tqdm
|
||||
import glob
|
||||
|
||||
import torch
|
||||
from torch_geometric.data import InMemoryDataset
|
||||
from torch_geometric.data import Data
|
||||
from torch.utils.data import Dataset
|
||||
import re
|
||||
|
||||
from utils.project_config import Classes, DataSplit
|
||||
|
||||
|
||||
def save_names(name_list, path):
|
||||
with open(path, 'wb') as f:
|
||||
f.writelines(name_list)
|
||||
|
||||
|
||||
class CustomShapeNet(InMemoryDataset):
|
||||
|
||||
categories = {key: val for val, key in Classes().items()}
|
||||
modes = {key: val for val, key in DataSplit().items()}
|
||||
name = 'CustomShapeNet'
|
||||
|
||||
@property
|
||||
def raw_dir(self):
|
||||
return self.root / 'raw'
|
||||
|
||||
@property
|
||||
def raw_file_names(self):
|
||||
return [self.mode]
|
||||
|
||||
@property
|
||||
def processed_dir(self):
|
||||
return self.root / 'processed'
|
||||
|
||||
def __init__(self, root_dir, collate_per_segment=True, mode='train', transform=None, pre_filter=None,
|
||||
pre_transform=None, refresh=False, with_normals=False):
|
||||
assert mode in self.modes.keys(), f'"mode" must be one of {self.modes.keys()}'
|
||||
|
||||
# Set the Dataset Parameters
|
||||
self.collate_per_segment, self.mode, self.refresh = collate_per_segment, mode, refresh
|
||||
self.with_normals = with_normals
|
||||
root_dir = Path(root_dir)
|
||||
super(CustomShapeNet, self).__init__(root_dir, transform, pre_transform, pre_filter)
|
||||
self.data, self.slices = self._load_dataset()
|
||||
print("Initialized")
|
||||
|
||||
@property
|
||||
def processed_file_names(self):
|
||||
return [f'{self.mode}.pt']
|
||||
|
||||
def download(self):
|
||||
dir_count = len([name for name in os.listdir(self.raw_dir) if os.path.isdir(os.path.join(self.raw_dir, name))])
|
||||
|
||||
if dir_count:
|
||||
print(f'{dir_count} folders have been found....')
|
||||
return dir_count
|
||||
raise IOError("No raw pointclouds have been found.")
|
||||
|
||||
@property
|
||||
def num_classes(self):
|
||||
return len(self.categories)
|
||||
|
||||
def _load_dataset(self):
|
||||
data, slices = None, None
|
||||
filepath = self.processed_paths[0]
|
||||
if self.refresh:
|
||||
try:
|
||||
os.remove(filepath)
|
||||
print('Processed Location "Refreshed" (We deleted the Files)')
|
||||
except FileNotFoundError:
|
||||
print('You meant to refresh the allready processed dataset, but there were none...')
|
||||
print('continue processing')
|
||||
pass
|
||||
|
||||
while True:
|
||||
try:
|
||||
data, slices = torch.load(filepath)
|
||||
print('Dataset Loaded')
|
||||
break
|
||||
except FileNotFoundError:
|
||||
self.process()
|
||||
continue
|
||||
return data, slices
|
||||
|
||||
def _transform_and_filter(self, data):
|
||||
# ToDo: ANy filter to apply? Then do it here.
|
||||
if self.pre_filter is not None and not self.pre_filter(data):
|
||||
data = self.pre_filter(data)
|
||||
raise NotImplementedError
|
||||
# ToDo: ANy transformation to apply? Then do it here.
|
||||
if self.pre_transform is not None:
|
||||
data = self.pre_transform(data)
|
||||
raise NotImplementedError
|
||||
return data
|
||||
|
||||
def process(self, delimiter=' '):
|
||||
datasets = defaultdict(list)
|
||||
path_to_clouds = self.raw_dir / self.mode
|
||||
|
||||
for pointcloud in tqdm(path_to_clouds.glob('*.xyz')):
|
||||
if 'grid' not in pointcloud.name:
|
||||
continue
|
||||
data = None
|
||||
|
||||
with pointcloud.open('r') as f:
|
||||
src = defaultdict(list)
|
||||
# Iterate over all rows
|
||||
for row in f:
|
||||
if row != '':
|
||||
vals = row.rstrip().split(delimiter)[None:None]
|
||||
vals = [float(x) if x not in ['-nan(ind)', 'nan(ind)'] else 0 for x in vals]
|
||||
src[vals[-1]].append(vals)
|
||||
|
||||
src = dict(src)
|
||||
for key, values in src.items():
|
||||
src[key] = torch.tensor(values, dtype=torch.double).squeeze()
|
||||
|
||||
if not self.collate_per_segment:
|
||||
src = dict(all=torch.stack([x for x in src.values()]))
|
||||
|
||||
for key, values in src.items():
|
||||
try:
|
||||
points = values[:, :-2]
|
||||
except IndexError:
|
||||
continue
|
||||
y = torch.as_tensor(values[:, -2], dtype=torch.long)
|
||||
y_c = torch.as_tensor(values[:, -1], dtype=torch.long)
|
||||
####################################
|
||||
# This is where you define the keys
|
||||
attr_dict = dict(y=y, y_c=y_c)
|
||||
if self.with_normals:
|
||||
pos = points[:, :6]
|
||||
norm = None
|
||||
attr_dict.update(pos=pos, norm=norm)
|
||||
if not self.with_normals:
|
||||
pos = points[:, :3]
|
||||
norm = points[:, 3:6]
|
||||
attr_dict.update(pos=pos, norm=norm)
|
||||
####################################
|
||||
if self.collate_per_segment:
|
||||
data = Data(**attr_dict)
|
||||
else:
|
||||
if not data:
|
||||
data = defaultdict(list)
|
||||
# points=points, norm=points[:, 3:]
|
||||
for key, val in attr_dict.items():
|
||||
data[key].append(val)
|
||||
|
||||
data = self._transform_and_filter(data)
|
||||
if self.collate_per_segment:
|
||||
datasets[self.mode].append(data)
|
||||
if not self.collate_per_segment:
|
||||
# Todo: What is this?
|
||||
datasets[self.mode].append(Data(**{key: torch.cat(data[key]) for key in data.keys()}))
|
||||
|
||||
if datasets[self.mode]:
|
||||
os.makedirs(self.processed_dir, exist_ok=True)
|
||||
torch.save(self.collate(datasets[self.mode]), self.processed_paths[0])
|
||||
|
||||
def __repr__(self):
|
||||
return f'{self.__class__.__name__}({len(self)})'
|
||||
|
||||
|
||||
class ShapeNetPartSegDataset(Dataset):
|
||||
"""
|
||||
Resample raw point cloud to fixed number of points.
|
||||
Map raw label from range [1, N] to [0, N-1].
|
||||
"""
|
||||
|
||||
name = 'ShapeNetPartSegDataset'
|
||||
|
||||
def __init__(self, root_dir, npoints=1024, mode='train', **kwargs):
|
||||
super(ShapeNetPartSegDataset, self).__init__()
|
||||
self.mode = mode
|
||||
kwargs.update(dict(root_dir=root_dir, mode=self.mode))
|
||||
self.npoints = npoints
|
||||
self.dataset = CustomShapeNet(**kwargs)
|
||||
|
||||
def __getitem__(self, index):
|
||||
data = self.dataset[index]
|
||||
|
||||
# Resample to fixed number of points
|
||||
try:
|
||||
npoints = self.npoints if self.mode != 'predict' else data.pos.shape[0]
|
||||
choice = np.random.choice(data.pos.shape[0], npoints, replace=False if self.mode == 'predict' else True)
|
||||
except ValueError:
|
||||
choice = []
|
||||
|
||||
pos, norm, y = data.pos[choice, :], data.norm[choice], data.y[choice]
|
||||
|
||||
# y -= 1 if self.num_classes() in y else 0 # Map label from [1, C] to [0, C-1]
|
||||
|
||||
sample = Data(**dict(pos=pos, # torch.Tensor (n, 3/6)
|
||||
y=y, # torch.Tensor (n,)
|
||||
norm=norm # torch.Tensor (n, 3/0)
|
||||
)
|
||||
)
|
||||
return sample
|
||||
|
||||
def __len__(self):
|
||||
return len(self.dataset)
|
||||
|
||||
def num_classes(self):
|
||||
return self.dataset.num_classes
|
||||
@@ -1,8 +1,6 @@
|
||||
from torch.utils.data import Dataset
|
||||
from._point_dataset import _Point_Dataset
|
||||
# Template
|
||||
|
||||
|
||||
class TemplateDataset(_Point_Dataset):
|
||||
class TemplateDataset(object):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(TemplateDataset, self).__init__()
|
||||
|
||||
|
||||
Reference in New Issue
Block a user