2020-06-19 08:17:35 +02:00

213 lines
7.2 KiB
Python

from pathlib import Path
import numpy as np
from collections import defaultdict
import os
from tqdm import tqdm
import glob
import torch
from torch_geometric.data import InMemoryDataset
from torch_geometric.data import Data
from torch.utils.data import Dataset
import re
from utils.project_config import Classes, DataSplit
def save_names(name_list, path):
with open(path, 'wb') as f:
f.writelines(name_list)
class CustomShapeNet(InMemoryDataset):
categories = {key: val for val, key in Classes().items()}
modes = {key: val for val, key in DataSplit().items()}
name = 'CustomShapeNet'
@property
def raw_dir(self):
return self.root / 'raw'
@property
def raw_file_names(self):
return [self.mode]
@property
def processed_dir(self):
return self.root / 'processed'
def __init__(self, root_dir, collate_per_segment=True, mode='train', transform=None, pre_filter=None,
pre_transform=None, refresh=False, with_normals=False):
assert mode in self.modes.keys(), f'"mode" must be one of {self.modes.keys()}'
# Set the Dataset Parameters
self.collate_per_segment, self.mode, self.refresh = collate_per_segment, mode, refresh
self.with_normals = with_normals
root_dir = Path(root_dir)
super(CustomShapeNet, self).__init__(root_dir, transform, pre_transform, pre_filter)
self.data, self.slices = self._load_dataset()
print("Initialized")
@property
def processed_file_names(self):
return [f'{self.mode}.pt']
def download(self):
dir_count = len([name for name in os.listdir(self.raw_dir) if os.path.isdir(os.path.join(self.raw_dir, name))])
if dir_count:
print(f'{dir_count} folders have been found....')
return dir_count
raise IOError("No raw pointclouds have been found.")
@property
def num_classes(self):
return len(self.categories)
def _load_dataset(self):
data, slices = None, None
filepath = self.processed_paths[0]
if self.refresh:
try:
os.remove(filepath)
print('Processed Location "Refreshed" (We deleted the Files)')
except FileNotFoundError:
print('You meant to refresh the allready processed dataset, but there were none...')
print('continue processing')
pass
while True:
try:
data, slices = torch.load(filepath)
print('Dataset Loaded')
break
except FileNotFoundError:
self.process()
continue
return data, slices
def _transform_and_filter(self, data):
# ToDo: ANy filter to apply? Then do it here.
if self.pre_filter is not None and not self.pre_filter(data):
data = self.pre_filter(data)
raise NotImplementedError
# ToDo: ANy transformation to apply? Then do it here.
if self.pre_transform is not None:
data = self.pre_transform(data)
raise NotImplementedError
return data
def process(self, delimiter=' '):
datasets = defaultdict(list)
path_to_clouds = self.raw_dir / self.mode
for pointcloud in tqdm(path_to_clouds.glob('*.xyz')):
if 'grid' not in pointcloud.name:
continue
data = None
with pointcloud.open('r') as f:
src = defaultdict(list)
# Iterate over all rows
for row in f:
if row != '':
vals = row.rstrip().split(delimiter)[None:None]
vals = [float(x) if x not in ['-nan(ind)', 'nan(ind)'] else 0 for x in vals]
src[vals[-1]].append(vals)
src = dict(src)
for key, values in src.items():
src[key] = torch.tensor(values, dtype=torch.double).squeeze()
if not self.collate_per_segment:
src = dict(all=torch.stack([x for x in src.values()]))
for key, values in src.items():
try:
points = values[:, :-2]
except IndexError:
continue
y = torch.as_tensor(values[:, -2], dtype=torch.long)
y_c = torch.as_tensor(values[:, -1], dtype=torch.long)
####################################
# This is where you define the keys
attr_dict = dict(y=y, y_c=y_c)
if self.with_normals:
pos = points[:, :6]
norm = None
attr_dict.update(pos=pos, norm=norm)
if not self.with_normals:
pos = points[:, :3]
norm = points[:, 3:6]
attr_dict.update(pos=pos, norm=norm)
####################################
if self.collate_per_segment:
data = Data(**attr_dict)
else:
if not data:
data = defaultdict(list)
# points=points, norm=points[:, 3:]
for key, val in attr_dict.items():
data[key].append(val)
data = self._transform_and_filter(data)
if self.collate_per_segment:
datasets[self.mode].append(data)
if not self.collate_per_segment:
# Todo: What is this?
datasets[self.mode].append(Data(**{key: torch.cat(data[key]) for key in data.keys()}))
if datasets[self.mode]:
os.makedirs(self.processed_dir, exist_ok=True)
torch.save(self.collate(datasets[self.mode]), self.processed_paths[0])
def __repr__(self):
return f'{self.__class__.__name__}({len(self)})'
class ShapeNetPartSegDataset(Dataset):
"""
Resample raw point cloud to fixed number of points.
Map raw label from range [1, N] to [0, N-1].
"""
name = 'ShapeNetPartSegDataset'
def __init__(self, root_dir, npoints=1024, mode='train', **kwargs):
super(ShapeNetPartSegDataset, self).__init__()
self.mode = mode
kwargs.update(dict(root_dir=root_dir, mode=self.mode))
self.npoints = npoints
self.dataset = CustomShapeNet(**kwargs)
def __getitem__(self, index):
data = self.dataset[index]
# Resample to fixed number of points
try:
npoints = self.npoints if self.mode != 'predict' else data.pos.shape[0]
choice = np.random.choice(data.pos.shape[0], npoints, replace=False if self.mode == 'predict' else True)
except ValueError:
choice = []
pos, norm, y = data.pos[choice, :], data.norm[choice], data.y[choice]
# y -= 1 if self.num_classes() in y else 0 # Map label from [1, C] to [0, C-1]
sample = Data(**dict(pos=pos, # torch.Tensor (n, 3/6)
y=y, # torch.Tensor (n,)
norm=norm # torch.Tensor (n, 3/0)
)
)
return sample
def __len__(self):
return len(self.dataset)
def num_classes(self):
return self.dataset.num_classes