point_to_primitive/datasets/grid_clusters.py

84 lines
3.0 KiB
Python

import pickle
from collections import defaultdict
import numpy as np
from torch.utils.data import ConcatDataset
from tqdm import trange
from ._point_dataset import _Point_Dataset
class GridClusters(_Point_Dataset):
split: str
name = 'GridClusters'
def __init__(self, *args, n_spatial_clusters=3*3*3, setting='pc', **kwargs):
self.n_spatial_clusters = n_spatial_clusters
self.setting = setting
super(GridClusters, self).__init__(*args, **kwargs)
def __len__(self):
return len(self._files)
def _read_or_load(self, item):
raw_file_path = self._files[item]
processed_file_path = self.processed / raw_file_path.name.replace(self.raw_ext, self.processed_ext)
if not self.load_preprocessed:
processed_file_path.unlink(missing_ok=True)
if not processed_file_path.exists():
# nested default dict
pointcloud = defaultdict(lambda: defaultdict(list))
with raw_file_path.open('r') as raw_file:
for row in raw_file:
values = [float(x) for x in row.strip().split(' ')]
for header, value in zip(self.headers, values):
pointcloud[int(values[-1])][header].append(value)
for cluster in pointcloud.keys():
for key in pointcloud[cluster].keys():
pointcloud[cluster][key] = np.asarray(pointcloud[cluster][key])
pointcloud[cluster] = dict(pointcloud[cluster])
pointcloud = dict(pointcloud)
with processed_file_path.open('wb') as processed_file:
pickle.dump(pointcloud, processed_file)
return processed_file_path
def __getitem__(self, item):
processed_file_path = self._read_or_load(item)
with processed_file_path.open('rb') as processed_file:
pointcloud = pickle.load(processed_file)
# By number Variant
# cl_idx_list = np.cumsum([[len(self) // self.n_spatial_clusters, ] * self.n_spatial_clusters])
# cl_idx = [idx for idx, x in enumerate(cl_idx_list) if item <= x][0]
# Random Variant
cl_idx = np.random.randint(0, len(pointcloud))
pointcloud = pointcloud[list(pointcloud.keys())[cl_idx]]
position = np.stack((pointcloud['x'], pointcloud['y'], pointcloud['z']), axis=-1)
normal = np.stack((pointcloud['xn'], pointcloud['yn'], pointcloud['zn']), axis=-1)
label = pointcloud['label']
cl_label = pointcloud['cl_idx']
sample_idxs = self.sampling(position)
while sample_idxs.shape[0] < self.sampling_k:
sample_idxs = np.concatenate((sample_idxs, sample_idxs))[:self.sampling_k]
normal = normal[sample_idxs].astype(np.float)
position = position[sample_idxs].astype(np.float)
normal = self.transforms(normal)
position = self.transforms(position)
return (normal, position,
label[sample_idxs].astype(np.int),
cl_label[sample_idxs].astype(np.int)
)