Transformer running
This commit is contained in:
parent
b5e3e5aec1
commit
f89f0f8528
@ -9,7 +9,7 @@ from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
|
||||
|
||||
from ml_lib.modules.util import LightningBaseModule
|
||||
from ml_lib.utils.config import Config
|
||||
from ml_lib.utils.logging import Logger
|
||||
from ml_lib.utils.loggers import Logger
|
||||
|
||||
warnings.filterwarnings('ignore', category=FutureWarning)
|
||||
warnings.filterwarnings('ignore', category=UserWarning)
|
||||
|
0
additions/__init__.py
Normal file
0
additions/__init__.py
Normal file
43
additions/losses.py
Normal file
43
additions/losses.py
Normal file
@ -0,0 +1,43 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class FocalLoss(nn.modules.loss._WeightedLoss):
|
||||
def __init__(self, weight=None, gamma=2,reduction='mean'):
|
||||
super(FocalLoss, self).__init__(weight,reduction=reduction)
|
||||
self.gamma = gamma
|
||||
self.weight = weight # weight parameter will act as the alpha parameter to balance class weights
|
||||
|
||||
def forward(self, input, target):
|
||||
|
||||
ce_loss = F.cross_entropy(input, target, reduction=self.reduction, weight=self.weight)
|
||||
pt = torch.exp(-ce_loss)
|
||||
focal_loss = ((1 - pt) ** self.gamma * ce_loss).mean()
|
||||
return focal_loss
|
||||
|
||||
|
||||
class FocalLossRob(nn.Module):
|
||||
# taken from https://github.com/mathiaszinnen/focal_loss_torch/blob/main/focal_loss/focal_loss.py
|
||||
def __init__(self, alpha=1, gamma=2, reduction: str = 'mean'):
|
||||
super().__init__()
|
||||
if reduction not in ['mean', 'none', 'sum']:
|
||||
raise NotImplementedError('Reduction {} not implemented.'.format(reduction))
|
||||
self.reduction = reduction
|
||||
self.alpha = alpha
|
||||
self.gamma = gamma
|
||||
|
||||
def forward(self, x, target):
|
||||
x = x.clamp(1e-7, 1. - 1e-7) # own addition
|
||||
p_t = torch.where(target == 1, x, 1-x)
|
||||
fl = - 1 * (1 - p_t) ** self.gamma * torch.log(p_t)
|
||||
fl = torch.where(target == 1, fl * self.alpha, fl)
|
||||
return self._reduce(fl)
|
||||
|
||||
def _reduce(self, x):
|
||||
if self.reduction == 'mean':
|
||||
return x.mean()
|
||||
elif self.reduction == 'sum':
|
||||
return x.sum()
|
||||
else:
|
||||
return x
|
@ -60,7 +60,8 @@ class LibrosaAudioToMelDataset(Dataset):
|
||||
self.mel_file_path.unlink(missing_ok=True)
|
||||
if not self.mel_file_path.exists():
|
||||
self.mel_file_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
raw_sample, _ = librosa.core.load(self.audio_path, sr=self.sampling_rate)
|
||||
with self.audio_path.open(mode='rb') as audio_file:
|
||||
raw_sample, _ = librosa.core.load(audio_file, sr=self.sampling_rate)
|
||||
mel_sample = self._mel_transform(raw_sample)
|
||||
with self.mel_file_path.open('wb') as mel_file:
|
||||
pickle.dump(mel_sample, mel_file, protocol=pickle.HIGHEST_PROTOCOL)
|
||||
|
@ -22,10 +22,12 @@ class TorchMelDataset(Dataset):
|
||||
self.mel_hop_len = int(mel_hop_len)
|
||||
self.sub_segment_hop_len = int(sub_segment_hop_len)
|
||||
self.n = int((self.sampling_rate / self.mel_hop_len) * self.audio_file_len + 1)
|
||||
if self.sub_segment_len and self.sub_segment_hop_len:
|
||||
if self.sub_segment_len and self.sub_segment_hop_len and (self.n - self.sub_segment_len) > 0:
|
||||
self.offsets = list(range(0, self.n - self.sub_segment_len, self.sub_segment_hop_len))
|
||||
else:
|
||||
self.offsets = [0]
|
||||
if len(self) == 0:
|
||||
print('what happend here')
|
||||
self.label = label
|
||||
self.transform = transform
|
||||
|
||||
|
@ -2,7 +2,9 @@ from itertools import cycle
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from sklearn.metrics import f1_score, roc_curve, auc, roc_auc_score, ConfusionMatrixDisplay, confusion_matrix
|
||||
from pytorch_lightning.metrics import Recall
|
||||
from sklearn.metrics import f1_score, roc_curve, auc, roc_auc_score, ConfusionMatrixDisplay, confusion_matrix, \
|
||||
recall_score
|
||||
|
||||
from ml_lib.metrics._base_score import _BaseScores
|
||||
from ml_lib.utils.tools import to_one_hot
|
||||
@ -16,20 +18,21 @@ class MultiClassScores(_BaseScores):
|
||||
super(MultiClassScores, self).__init__(*args)
|
||||
pass
|
||||
|
||||
def __call__(self, outputs):
|
||||
def __call__(self, outputs, class_names=None):
|
||||
summary_dict = dict()
|
||||
class_names = class_names or range(self.model.params.n_classes)
|
||||
#######################################################################################
|
||||
# Additional Score - UAR - ROC - Conf. Matrix - F1
|
||||
#######################################################################################
|
||||
#
|
||||
# INIT
|
||||
y_true = torch.cat([output['batch_y'] for output in outputs]).cpu().numpy()
|
||||
y_true_one_hot = to_one_hot(y_true, self.model.n_classes)
|
||||
y_true_one_hot = to_one_hot(y_true, self.model.params.n_classes)
|
||||
|
||||
y_pred = torch.cat([output['y'] for output in outputs]).squeeze().cpu().float().numpy()
|
||||
y_pred_max = np.argmax(y_pred, axis=1)
|
||||
|
||||
class_names = {val: key for key, val in self.model.dataset.test_dataset.classes.items()}
|
||||
class_names = {val: key for val, key in enumerate(class_names)}
|
||||
######################################################################################
|
||||
#
|
||||
# F1 SCORE
|
||||
@ -38,7 +41,12 @@ class MultiClassScores(_BaseScores):
|
||||
macro_f1_score = f1_score(y_true, y_pred_max, labels=None, pos_label=1, average='macro', sample_weight=None,
|
||||
zero_division=True)
|
||||
summary_dict.update(dict(micro_f1_score=micro_f1_score, macro_f1_score=macro_f1_score))
|
||||
|
||||
######################################################################################
|
||||
#
|
||||
# Unweichted Average Recall
|
||||
uar = recall_score(y_true, y_pred_max, labels=[0, 1, 2, 3, 4], average='macro',
|
||||
sample_weight=None, zero_division='warn')
|
||||
summary_dict.update(dict(uar_score=uar))
|
||||
#######################################################################################
|
||||
#
|
||||
# ROC Curve
|
||||
@ -47,7 +55,7 @@ class MultiClassScores(_BaseScores):
|
||||
fpr = dict()
|
||||
tpr = dict()
|
||||
roc_auc = dict()
|
||||
for i in range(self.model.n_classes):
|
||||
for i in range(self.model.params.n_classes):
|
||||
fpr[i], tpr[i], _ = roc_curve(y_true_one_hot[:, i], y_pred[:, i])
|
||||
roc_auc[i] = auc(fpr[i], tpr[i])
|
||||
|
||||
@ -56,15 +64,15 @@ class MultiClassScores(_BaseScores):
|
||||
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
|
||||
|
||||
# First aggregate all false positive rates
|
||||
all_fpr = np.unique(np.concatenate([fpr[i] for i in range(self.model.n_classes)]))
|
||||
all_fpr = np.unique(np.concatenate([fpr[i] for i in range(self.model.params.n_classes)]))
|
||||
|
||||
# Then interpolate all ROC curves at this points
|
||||
mean_tpr = np.zeros_like(all_fpr)
|
||||
for i in range(self.model.n_classes):
|
||||
for i in range(self.model.params.n_classes):
|
||||
mean_tpr += np.interp(all_fpr, fpr[i], tpr[i])
|
||||
|
||||
# Finally average it and compute AUC
|
||||
mean_tpr /= self.model.n_classes
|
||||
mean_tpr /= self.model.params.n_classes
|
||||
|
||||
fpr["macro"] = all_fpr
|
||||
tpr["macro"] = mean_tpr
|
||||
@ -83,7 +91,7 @@ class MultiClassScores(_BaseScores):
|
||||
colors = cycle(['firebrick', 'orangered', 'gold', 'olive', 'limegreen', 'aqua',
|
||||
'dodgerblue', 'slategrey', 'royalblue', 'indigo', 'fuchsia'], )
|
||||
|
||||
for i, color in zip(range(self.model.n_classes), colors):
|
||||
for i, color in zip(range(self.model.params.n_classes), colors):
|
||||
plt.plot(fpr[i], tpr[i], color=color, lw=2, label=f'{class_names[i]} ({round(roc_auc[i], 2)})')
|
||||
|
||||
plt.plot([0, 1], [0, 1], 'k--', lw=2)
|
||||
@ -116,9 +124,9 @@ class MultiClassScores(_BaseScores):
|
||||
fig1, ax1 = plt.subplots(dpi=96)
|
||||
cm = confusion_matrix([class_names[x] for x in y_true], [class_names[x] for x in y_pred_max],
|
||||
labels=[class_names[key] for key in class_names.keys()],
|
||||
normalize='all')
|
||||
normalize='true')
|
||||
disp = ConfusionMatrixDisplay(confusion_matrix=cm,
|
||||
display_labels=[class_names[i] for i in range(self.model.n_classes)]
|
||||
display_labels=[class_names[i] for i in range(self.model.params.n_classes)]
|
||||
)
|
||||
disp.plot(include_values=True, ax=ax1)
|
||||
|
||||
|
@ -22,8 +22,8 @@ DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
###################
|
||||
class LinearModule(ShapeMixin, nn.Module):
|
||||
|
||||
def __init__(self, in_shape, out_features, bias=True, activation=None,
|
||||
norm=False, dropout: Union[int, float] = 0, **kwargs):
|
||||
def __init__(self, in_shape, out_features, use_bias=True, activation=None,
|
||||
use_norm=False, dropout: Union[int, float] = 0, **kwargs):
|
||||
if list(kwargs.keys()):
|
||||
warnings.warn(f'The following arguments have been ignored: \n {list(kwargs.keys())}')
|
||||
super(LinearModule, self).__init__()
|
||||
@ -31,8 +31,8 @@ class LinearModule(ShapeMixin, nn.Module):
|
||||
self.in_shape = in_shape
|
||||
self.flat = Flatten(self.in_shape) if isinstance(self.in_shape, (tuple, list)) else F_x(in_shape)
|
||||
self.dropout = nn.Dropout(dropout) if dropout else F_x(self.flat.shape)
|
||||
self.norm = nn.BatchNorm1d(self.flat.shape) if norm else F_x(self.flat.shape)
|
||||
self.linear = nn.Linear(self.flat.shape, out_features, bias=bias)
|
||||
self.norm = nn.LayerNorm(self.flat.shape) if use_norm else F_x(self.flat.shape)
|
||||
self.linear = nn.Linear(self.flat.shape, out_features, bias=use_bias)
|
||||
self.activation = activation() if activation else F_x(self.linear.out_features)
|
||||
|
||||
def forward(self, x):
|
||||
@ -47,13 +47,14 @@ class LinearModule(ShapeMixin, nn.Module):
|
||||
class ConvModule(ShapeMixin, nn.Module):
|
||||
|
||||
def __init__(self, in_shape, conv_filters, conv_kernel, activation: nn.Module = nn.ELU, pooling_size=None,
|
||||
bias=True, norm=False, dropout: Union[int, float] = 0, trainable: bool = True,
|
||||
bias=True, use_norm=False, dropout: Union[int, float] = 0, trainable: bool = True,
|
||||
conv_class=nn.Conv2d, conv_stride=1, conv_padding=0, **kwargs):
|
||||
super(ConvModule, self).__init__()
|
||||
assert isinstance(in_shape, (tuple, list)), f'"in_shape" should be a [list, tuple], but was {type(in_shape)}'
|
||||
assert len(in_shape) == 3, f'Length should be 3, but was {len(in_shape)}'
|
||||
warnings.warn(f'The following arguments have been ignored: \n {list(kwargs.keys())}')
|
||||
if norm and not trainable:
|
||||
if len(kwargs.keys()):
|
||||
warnings.warn(f'The following arguments have been ignored: \n {list(kwargs.keys())}')
|
||||
if use_norm and not trainable:
|
||||
warnings.warn('You set this module to be not trainable but the running norm is active.\n' +
|
||||
'We set it to "eval" mode.\n' +
|
||||
'Keep this in mind if you do a finetunning or retraining step.'
|
||||
@ -72,9 +73,9 @@ class ConvModule(ShapeMixin, nn.Module):
|
||||
|
||||
# Modules
|
||||
self.activation = activation() or F_x(None)
|
||||
self.norm = nn.LayerNorm(self.in_shape, eps=1e-04) if use_norm else F_x(None)
|
||||
self.dropout = nn.Dropout2d(dropout) if dropout else F_x(None)
|
||||
self.pooling = nn.MaxPool2d(pooling_size) if pooling_size else F_x(None)
|
||||
self.norm = nn.BatchNorm2d(in_channels, eps=1e-04) if norm else F_x(None)
|
||||
self.conv = conv_class(in_channels, self.conv_filters, self.conv_kernel, bias=bias,
|
||||
padding=self.padding, stride=self.stride
|
||||
)
|
||||
@ -134,7 +135,7 @@ class DeConvModule(ShapeMixin, nn.Module):
|
||||
def __init__(self, in_shape, conv_filters, conv_kernel, conv_stride=1, conv_padding=0,
|
||||
dropout: Union[int, float] = 0, autopad=0,
|
||||
activation: Union[None, nn.Module] = nn.ReLU, interpolation_scale=0,
|
||||
bias=True, norm=False, **kwargs):
|
||||
bias=True, use_norm=False, **kwargs):
|
||||
super(DeConvModule, self).__init__()
|
||||
warnings.warn(f'The following arguments have been ignored: \n {list(kwargs.keys())}')
|
||||
in_channels, height, width = in_shape[0], in_shape[1], in_shape[2]
|
||||
@ -146,7 +147,7 @@ class DeConvModule(ShapeMixin, nn.Module):
|
||||
|
||||
self.autopad = AutoPad() if autopad else lambda x: x
|
||||
self.interpolation = Interpolate(scale_factor=interpolation_scale) if interpolation_scale else lambda x: x
|
||||
self.norm = nn.BatchNorm2d(in_channels, eps=1e-04) if norm else F_x(self.in_shape)
|
||||
self.norm = nn.LayerNorm(in_channels, eps=1e-04) if use_norm else F_x(self.in_shape)
|
||||
self.dropout = nn.Dropout2d(dropout) if dropout else F_x(self.in_shape)
|
||||
self.de_conv = nn.ConvTranspose2d(in_channels, self.conv_filters, self.conv_kernel, bias=bias,
|
||||
padding=self.padding, stride=self.stride)
|
||||
@ -166,14 +167,13 @@ class DeConvModule(ShapeMixin, nn.Module):
|
||||
|
||||
class ResidualModule(ShapeMixin, nn.Module):
|
||||
|
||||
def __init__(self, in_shape, module_class, n, norm=False, **module_parameters):
|
||||
def __init__(self, in_shape, module_class, n, use_norm=False, **module_parameters):
|
||||
assert n >= 1
|
||||
super(ResidualModule, self).__init__()
|
||||
self.in_shape = in_shape
|
||||
module_parameters.update(in_shape=in_shape)
|
||||
if norm:
|
||||
norm = nn.BatchNorm1d if len(self.in_shape) <= 2 else nn.BatchNorm2d
|
||||
self.norm = norm(self.in_shape if isinstance(self.in_shape, int) else self.in_shape[0])
|
||||
if use_norm:
|
||||
self.norm = nn.LayerNorm(self.in_shape if isinstance(self.in_shape, int) else self.in_shape[0])
|
||||
else:
|
||||
self.norm = F_x(self.in_shape)
|
||||
self.activation = module_parameters.get('activation', None)
|
||||
@ -216,13 +216,14 @@ class RecurrentModule(ShapeMixin, nn.Module):
|
||||
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, dim, hidden_dim, dropout=0.):
|
||||
def __init__(self, dim, hidden_dim, dropout=0., activation=nn.GELU):
|
||||
super().__init__()
|
||||
self.net = nn.Sequential(
|
||||
nn.Linear(dim, hidden_dim),
|
||||
nn.GELU(),
|
||||
activation() or F_x(None),
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(hidden_dim, dim),
|
||||
activation() or F_x(None),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
|
||||
@ -272,18 +273,20 @@ class Attention(nn.Module):
|
||||
|
||||
class TransformerModule(ShapeMixin, nn.Module):
|
||||
|
||||
def __init__(self, in_shape, depth, heads, mlp_dim, dropout=None, use_norm=False, activation='gelu'):
|
||||
def __init__(self, in_shape, depth, heads, mlp_dim, dropout=None, use_norm=False,
|
||||
activation=nn.GELU, use_residual=True):
|
||||
super(TransformerModule, self).__init__()
|
||||
|
||||
self.in_shape = in_shape
|
||||
self.use_residual = use_residual
|
||||
|
||||
self.flat = Flatten(self.in_shape) if isinstance(self.in_shape, (tuple, list)) else F_x(in_shape)
|
||||
|
||||
self.layers = nn.ModuleList([])
|
||||
self.embedding_dim = self.flat.flat_shape
|
||||
self.norm = nn.LayerNorm(self.embedding_dim)
|
||||
self.norm = nn.LayerNorm(self.embedding_dim) if use_norm else F_x(self.embedding_dim)
|
||||
self.attns = nn.ModuleList([Attention(self.embedding_dim, heads=heads, dropout=dropout) for _ in range(depth)])
|
||||
self.mlps = nn.ModuleList([FeedForward(self.embedding_dim, mlp_dim, dropout=dropout) for _ in range(depth)])
|
||||
self.mlps = nn.ModuleList([FeedForward(self.embedding_dim, mlp_dim, dropout=dropout, activation=activation)
|
||||
for _ in range(depth)])
|
||||
|
||||
def forward(self, x, mask=None, return_attn_weights=False, **_):
|
||||
tensor = self.flat(x)
|
||||
@ -297,11 +300,11 @@ class TransformerModule(ShapeMixin, nn.Module):
|
||||
attn_weights.append(attn_weight)
|
||||
else:
|
||||
attn_tensor = attn(attn_tensor, mask=mask)
|
||||
tensor = attn_tensor + tensor
|
||||
tensor = tensor + attn_tensor if self.use_residual else attn_tensor
|
||||
|
||||
# MLP
|
||||
mlp_tensor = self.norm(tensor)
|
||||
mlp_tensor = mlp(mlp_tensor)
|
||||
tensor = tensor + mlp_tensor
|
||||
tensor = tensor + mlp_tensor if self.use_residual else mlp_tensor
|
||||
|
||||
return (tensor, attn_weights) if return_attn_weights else tensor
|
||||
|
@ -183,10 +183,11 @@ class BaseCNNEncoder(ShapeMixin, nn.Module):
|
||||
# noinspection PyUnresolvedReferences
|
||||
def __init__(self, in_shape, lat_dim=256, use_bias=True, use_norm=False, dropout: Union[int, float] = 0,
|
||||
latent_activation: Union[nn.Module, None] = None, activation: nn.Module = nn.ELU,
|
||||
filters: List[int] = None, kernels: List[int] = None, **kwargs):
|
||||
filters: List[int] = None, kernels: Union[List[int], int, None] = None, **kwargs):
|
||||
super(BaseCNNEncoder, self).__init__()
|
||||
assert filters, '"Filters" has to be a list of int'
|
||||
assert kernels, '"Kernels" has to be a list of int'
|
||||
kernels = kernels or [3] * len(filters)
|
||||
kernels = kernels if not isinstance(kernels, int) else [kernels] * len(filters)
|
||||
assert len(kernels) == len(filters), 'Length of "Filters" and "Kernels" has to be same.'
|
||||
|
||||
# Optional Padding for odd image-sizes
|
||||
|
@ -1,7 +1,5 @@
|
||||
import inspect
|
||||
from argparse import ArgumentParser
|
||||
|
||||
from functools import reduce
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
from abc import ABC
|
||||
from pathlib import Path
|
||||
@ -12,14 +10,77 @@ from pytorch_lightning.utilities import argparse_utils
|
||||
from torch import nn
|
||||
from torch.nn import functional as F, Unfold
|
||||
|
||||
from sklearn.metrics import ConfusionMatrixDisplay
|
||||
|
||||
# Utility - Modules
|
||||
###################
|
||||
from ..utils.model_io import ModelParameters
|
||||
from ..utils.tools import locate_and_import_class, add_argparse_args
|
||||
from ..utils.tools import add_argparse_args
|
||||
|
||||
try:
|
||||
import pytorch_lightning as pl
|
||||
|
||||
class PLMetrics(pl.metrics.Metric):
|
||||
|
||||
def __init__(self, n_classes, tag=''):
|
||||
super(PLMetrics, self).__init__()
|
||||
|
||||
self.n_classes = n_classes
|
||||
self.tag = tag
|
||||
|
||||
self.accuracy_score = pl.metrics.Accuracy(compute_on_step=False)
|
||||
self.precision = pl.metrics.Precision(num_classes=self.n_classes, average='macro', compute_on_step=False)
|
||||
self.recall = pl.metrics.Recall(num_classes=self.n_classes, average='macro', compute_on_step=False)
|
||||
self.confusion_matrix = pl.metrics.ConfusionMatrix(self.n_classes, normalize='true', compute_on_step=False)
|
||||
# self.precision_recall_curve = pl.metrics.PrecisionRecallCurve(self.n_classes, compute_on_step=False)
|
||||
# self.average_prec = pl.metrics.AveragePrecision(self.n_classes, compute_on_step=True)
|
||||
# self.roc = pl.metrics.ROC(self.n_classes, compute_on_step=False)
|
||||
self.fbeta = pl.metrics.FBeta(self.n_classes, average='macro', compute_on_step=False)
|
||||
self.f1 = pl.metrics.F1(self.n_classes, average='macro', compute_on_step=False)
|
||||
|
||||
def __iter__(self):
|
||||
return iter(((name, metric) for name, metric in self._modules.items()))
|
||||
|
||||
def update(self, preds, target) -> None:
|
||||
for _, metric in self:
|
||||
metric.update(preds, target)
|
||||
|
||||
def reset(self) -> None:
|
||||
for _, metric in self:
|
||||
metric.reset()
|
||||
|
||||
def compute(self) -> dict:
|
||||
tag = f'{self.tag}_' if self.tag else ''
|
||||
return {f'{tag}{metric_name}_score': metric.compute() for metric_name, metric in self}
|
||||
|
||||
def compute_and_prepare(self):
|
||||
pl_metrics = self.compute()
|
||||
images_from_metrics = dict()
|
||||
for metric_name in list(pl_metrics.keys()):
|
||||
if 'curve' in metric_name:
|
||||
continue
|
||||
roc_curve = pl_metrics.pop(metric_name)
|
||||
print('debug_point')
|
||||
|
||||
elif 'matrix' in metric_name:
|
||||
matrix = pl_metrics.pop(metric_name)
|
||||
fig1, ax1 = plt.subplots(dpi=96)
|
||||
disp = ConfusionMatrixDisplay(confusion_matrix=matrix.cpu().numpy(),
|
||||
display_labels=[i for i in range(self.n_classes)]
|
||||
)
|
||||
disp.plot(include_values=True, ax=ax1)
|
||||
images_from_metrics[metric_name] = fig1
|
||||
|
||||
elif 'ROC' in metric_name:
|
||||
continue
|
||||
roc = pl_metrics.pop(metric_name)
|
||||
print('debug_point')
|
||||
else:
|
||||
pl_metrics[metric_name] = pl_metrics[metric_name].cpu().item()
|
||||
|
||||
return pl_metrics, images_from_metrics
|
||||
|
||||
|
||||
class LightningBaseModule(pl.LightningModule, ABC):
|
||||
|
||||
@classmethod
|
||||
@ -49,6 +110,9 @@ try:
|
||||
self._weight_init = weight_init
|
||||
self.params = ModelParameters(model_parameters)
|
||||
|
||||
self.metrics = PLMetrics(self.params.n_classes, tag='PL')
|
||||
pass
|
||||
|
||||
def size(self):
|
||||
return self.shape
|
||||
|
||||
|
@ -25,5 +25,12 @@ class _BaseDataModule(LightningDataModule):
|
||||
self.datasets = dict()
|
||||
|
||||
def transfer_batch_to_device(self, batch, device):
|
||||
return batch.to(device)
|
||||
|
||||
if isinstance(batch, list):
|
||||
for idx, item in enumerate(batch):
|
||||
try:
|
||||
batch[idx] = item.to(device)
|
||||
except (AttributeError, RuntimeError):
|
||||
continue
|
||||
return batch
|
||||
else:
|
||||
return batch.to(device)
|
||||
|
@ -1,6 +1,9 @@
|
||||
import ast
|
||||
import configparser
|
||||
from pathlib import Path
|
||||
from typing import Mapping, Dict
|
||||
|
||||
import torch
|
||||
from copy import deepcopy
|
||||
|
||||
from abc import ABC
|
||||
@ -9,8 +12,67 @@ from argparse import Namespace, ArgumentParser
|
||||
from collections import defaultdict
|
||||
from configparser import ConfigParser, DuplicateSectionError
|
||||
import hashlib
|
||||
from pytorch_lightning import Trainer
|
||||
|
||||
from ml_lib.utils.tools import locate_and_import_class
|
||||
from ml_lib.utils.loggers import Logger
|
||||
from ml_lib.utils.tools import locate_and_import_class, auto_cast
|
||||
|
||||
|
||||
# Argument Parser and default Values
|
||||
# =============================================================================
|
||||
def parse_comandline_args_add_defaults(filepath, overrides=None):
|
||||
|
||||
# Parse Command Line
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument('--model_name', type=str)
|
||||
parser.add_argument('--data_name', type=str)
|
||||
|
||||
# Load Defaults from _parameters.ini file
|
||||
config = configparser.ConfigParser()
|
||||
config.read(str(filepath))
|
||||
|
||||
new_defaults = dict()
|
||||
for key in ['project', 'train', 'data']:
|
||||
defaults = config[key]
|
||||
new_defaults.update({key: auto_cast(val) for key, val in defaults.items()})
|
||||
|
||||
if new_defaults['debug']:
|
||||
new_defaults.update(
|
||||
max_epochs=2,
|
||||
max_steps=2 # The seems to be the new "fast_dev_run"
|
||||
)
|
||||
|
||||
args, _ = parser.parse_known_args()
|
||||
overrides = overrides or dict()
|
||||
default_data = overrides.get('data_name', None) or new_defaults['data_name']
|
||||
default_model = overrides.get('model_name', None) or new_defaults['model_name']
|
||||
|
||||
data_name = args.__dict__.get('data_name', None) or default_data
|
||||
model_name = args.__dict__.get('model_name', None) or default_model
|
||||
|
||||
new_defaults.update({key: auto_cast(val) for key, val in config[model_name].items()})
|
||||
|
||||
found_data_class = locate_and_import_class(data_name, 'datasets')
|
||||
found_model_class = locate_and_import_class(model_name, 'models')
|
||||
|
||||
for module in [Logger, Trainer, found_data_class, found_model_class]:
|
||||
parser = module.add_argparse_args(parser)
|
||||
|
||||
args, _ = parser.parse_known_args(namespace=Namespace(**new_defaults))
|
||||
|
||||
args = vars(args)
|
||||
args.update({key: auto_cast(val) for key, val in args.items()})
|
||||
args.update(gpus=[0] if torch.cuda.is_available() and not args['debug'] else None,
|
||||
row_log_interval=1000, # TODO: Better Value / Setting
|
||||
log_save_interval=10000, # TODO: Better Value / Setting
|
||||
auto_lr_find=not args['debug'],
|
||||
weights_summary='top',
|
||||
check_val_every_n_epoch=1 if args['debug'] else args.get('check_val_every_n_epoch', 1)
|
||||
)
|
||||
|
||||
if overrides is not None and isinstance(overrides, (Mapping, Dict)):
|
||||
args.update(**overrides)
|
||||
return args, found_data_class, found_model_class
|
||||
|
||||
|
||||
def is_jsonable(x):
|
||||
|
30
utils/equal_sampler.py
Normal file
30
utils/equal_sampler.py
Normal file
@ -0,0 +1,30 @@
|
||||
|
||||
import random
|
||||
from typing import Iterator, Sequence
|
||||
|
||||
from torch.utils.data import Sampler
|
||||
from torch.utils.data.sampler import T_co
|
||||
|
||||
|
||||
# noinspection PyMissingConstructor
|
||||
class EqualSampler(Sampler):
|
||||
|
||||
def __init__(self, idxs_per_class: Sequence[Sequence[float]], replacement: bool = True) -> None:
|
||||
|
||||
self.replacement = replacement
|
||||
self.idxs_per_class = idxs_per_class
|
||||
self.len_largest_class = max([len(x) for x in self.idxs_per_class])
|
||||
|
||||
def __iter__(self) -> Iterator[T_co]:
|
||||
return iter(random.choice(self.idxs_per_class[random.randint(0, len(self.idxs_per_class)-1)])
|
||||
for _ in range(len(self)))
|
||||
|
||||
def __len__(self):
|
||||
return self.len_largest_class * len(self.idxs_per_class)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
es = EqualSampler([list(range(5)), list(range(5, 10)), list(range(10, 12))])
|
||||
for i in es:
|
||||
print(i)
|
||||
pass
|
@ -1,5 +1,6 @@
|
||||
import inspect
|
||||
from argparse import ArgumentParser
|
||||
from copy import deepcopy
|
||||
|
||||
import hashlib
|
||||
from pathlib import Path
|
||||
|
||||
import os
|
||||
@ -17,11 +18,34 @@ class Logger(LightningLoggerBase):
|
||||
|
||||
@classmethod
|
||||
def from_argparse_args(cls, args, **kwargs):
|
||||
return argparse_utils.from_argparse_args(cls, args, **kwargs)
|
||||
cleaned_args = deepcopy(args.__dict__)
|
||||
|
||||
# Clean Seed and other attributes
|
||||
# TODO: Find a better way in cleaning this
|
||||
for attr in ['seed', 'num_worker', 'debug', 'eval', 'owner', 'data_root', 'check_val_every_n_epoch',
|
||||
'reset', 'outpath', 'version', 'gpus', 'neptune_key', 'num_sanity_val_steps', 'tpu_cores',
|
||||
'progress_bar_refresh_rate', 'log_save_interval', 'row_log_interval']:
|
||||
|
||||
try:
|
||||
del cleaned_args[attr]
|
||||
except KeyError:
|
||||
pass
|
||||
|
||||
kwargs.update(params=cleaned_args)
|
||||
new_logger = argparse_utils.from_argparse_args(cls, args, **kwargs)
|
||||
return new_logger
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return self._name
|
||||
def fingerprint(self):
|
||||
h = hashlib.md5()
|
||||
h.update(self._finger_print_string.encode())
|
||||
fingerprint = h.hexdigest()
|
||||
return fingerprint
|
||||
|
||||
@property
|
||||
def name(self):
|
||||
short_name = "".join(c for c in self.model_name if c.isupper())
|
||||
return f'{short_name}_{self.fingerprint}'
|
||||
|
||||
media_dir = 'media'
|
||||
|
||||
@ -42,7 +66,12 @@ class Logger(LightningLoggerBase):
|
||||
|
||||
@property
|
||||
def project_name(self):
|
||||
return f"{self.owner}/{self.name.replace('_', '-')}"
|
||||
return f"{self.owner}/{self.projeect_root.replace('_', '-')}"
|
||||
|
||||
@property
|
||||
def projeect_root(self):
|
||||
root_path = Path(os.getcwd()).name if not self.debug else 'test'
|
||||
return root_path
|
||||
|
||||
@property
|
||||
def version(self):
|
||||
@ -56,7 +85,7 @@ class Logger(LightningLoggerBase):
|
||||
def outpath(self):
|
||||
return Path(self.root_out) / self.model_name
|
||||
|
||||
def __init__(self, owner, neptune_key, model_name, project_name='', outpath='output', seed=69, debug=False):
|
||||
def __init__(self, owner, neptune_key, model_name, outpath='output', seed=69, debug=False, params=None):
|
||||
"""
|
||||
params (dict|None): Optional. Parameters of the experiment. After experiment creation params are read-only.
|
||||
Parameters are displayed in the experiment’s Parameters section and each key-value pair can be
|
||||
@ -71,51 +100,67 @@ class Logger(LightningLoggerBase):
|
||||
super(Logger, self).__init__()
|
||||
|
||||
self.debug = debug
|
||||
self._name = project_name or Path(os.getcwd()).name if not self.debug else 'test'
|
||||
self.owner = owner if not self.debug else 'testuser'
|
||||
self.neptune_key = neptune_key if not self.debug else 'XXX'
|
||||
self.root_out = outpath if not self.debug else 'debug_out'
|
||||
|
||||
self.params = params
|
||||
|
||||
self.seed = seed
|
||||
self.model_name = model_name
|
||||
|
||||
if self.params:
|
||||
_, fingerprint_tuple = zip(*sorted(self.params.items(), key=lambda tup: tup[0]))
|
||||
self._finger_print_string = str(fingerprint_tuple)
|
||||
else:
|
||||
self._finger_print_string = str((self.owner, self.root_out, self.seed, self.model_name, self.debug))
|
||||
self.params.update(fingerprint=self.fingerprint)
|
||||
|
||||
self._csvlogger_kwargs = dict(save_dir=self.outpath, version=self.version, name=self.name)
|
||||
self._neptune_kwargs = dict(offline_mode=self.debug,
|
||||
params=self.params,
|
||||
api_key=self.neptune_key,
|
||||
experiment_name=self.name,
|
||||
# tags=?,
|
||||
project_name=self.project_name)
|
||||
try:
|
||||
self.neptunelogger = NeptuneLogger(**self._neptune_kwargs)
|
||||
except ProjectNotFound as e:
|
||||
print(f'The project "{self.project_name}"')
|
||||
print(f'The project "{self.project_name}" does not exist! Create it or check your spelling.')
|
||||
print(e)
|
||||
|
||||
self.csvlogger = CSVLogger(**self._csvlogger_kwargs)
|
||||
if self.params:
|
||||
self.log_hyperparams(self.params)
|
||||
|
||||
def close(self):
|
||||
self.csvlogger.close()
|
||||
self.neptunelogger.close()
|
||||
|
||||
def set_fingerprint_string(self, fingerprint_str):
|
||||
self._finger_print_string = fingerprint_str
|
||||
|
||||
def log_text(self, name, text, **_):
|
||||
# TODO Implement Offline variant.
|
||||
self.neptunelogger.log_text(name, text)
|
||||
|
||||
def log_hyperparams(self, params):
|
||||
self.neptunelogger.log_hyperparams(params)
|
||||
self.csvlogger.log_hyperparams(params)
|
||||
pass
|
||||
|
||||
def log_metric(self, metric_name, metric_value, step=None, **kwargs):
|
||||
self.csvlogger.log_metrics(dict(metric_name=metric_value, **kwargs), step=step, **kwargs)
|
||||
self.neptunelogger.log_metric(metric_name, metric_value, step=step, **kwargs)
|
||||
pass
|
||||
|
||||
def log_metrics(self, metrics, step=None):
|
||||
self.neptunelogger.log_metrics(metrics, step=step)
|
||||
self.csvlogger.log_metrics(metrics, step=step)
|
||||
pass
|
||||
|
||||
def close(self):
|
||||
self.csvlogger.close()
|
||||
self.neptunelogger.close()
|
||||
|
||||
def log_text(self, name, text, **_):
|
||||
# TODO Implement Offline variant.
|
||||
self.neptunelogger.log_text(name, text)
|
||||
|
||||
def log_metric(self, metric_name, metric_value, **kwargs):
|
||||
self.csvlogger.log_metrics(dict(metric_name=metric_value))
|
||||
self.neptunelogger.log_metric(metric_name, metric_value, **kwargs)
|
||||
|
||||
def log_image(self, name, image, ext='png', **kwargs):
|
||||
step = kwargs.get('step', None)
|
||||
image_name = f'{step}_{name}' if step is not None else name
|
||||
def log_image(self, name, image, ext='png', step=None, **kwargs):
|
||||
image_name = f'{"0" * (4 - len(str(step)))}{step}_{name}' if step is not None else name
|
||||
image_path = self.log_dir / self.media_dir / f'{image_name}.{ext[1:] if ext.startswith(".") else ext}'
|
||||
(self.log_dir / self.media_dir).mkdir(parents=True, exist_ok=True)
|
||||
image.savefig(image_path, bbox_inches='tight', pad_inches=0)
|
@ -2,7 +2,7 @@ import importlib
|
||||
import inspect
|
||||
import pickle
|
||||
import shelve
|
||||
from argparse import ArgumentParser
|
||||
from argparse import ArgumentParser, ArgumentError
|
||||
from ast import literal_eval
|
||||
from pathlib import Path, PurePath
|
||||
from typing import Union
|
||||
@ -70,14 +70,17 @@ def add_argparse_args(cls, parent_parser):
|
||||
full_arg_spec = inspect.getfullargspec(cls.__init__)
|
||||
n_non_defaults = len(full_arg_spec.args) - (len(full_arg_spec.defaults) if full_arg_spec.defaults else 0)
|
||||
for idx, argument in enumerate(full_arg_spec.args):
|
||||
if argument == 'self':
|
||||
try:
|
||||
if argument == 'self':
|
||||
continue
|
||||
if idx < n_non_defaults:
|
||||
parser.add_argument(f'--{argument}', type=int)
|
||||
else:
|
||||
argument_type = type(argument)
|
||||
parser.add_argument(f'--{argument}',
|
||||
type=argument_type,
|
||||
default=full_arg_spec.defaults[idx - n_non_defaults]
|
||||
)
|
||||
except ArgumentError:
|
||||
continue
|
||||
if idx < n_non_defaults:
|
||||
parser.add_argument(f'--{argument}', type=int)
|
||||
else:
|
||||
argument_type = type(argument)
|
||||
parser.add_argument(f'--{argument}',
|
||||
type=argument_type,
|
||||
default=full_arg_spec.defaults[idx - n_non_defaults]
|
||||
)
|
||||
return parser
|
||||
|
Loading…
x
Reference in New Issue
Block a user