2021-03-04 12:01:08 +01:00

81 lines
3.0 KiB
Python

# Imports
# =============================================================================
import warnings
import torch
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
from ml_lib.modules.util import LightningBaseModule
from ml_lib.utils.config import Config
from ml_lib.utils.loggers import Logger
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=UserWarning)
def run_lightning_loop(config_obj):
# Logging
# ================================================================================
# Logger
with Logger(config_obj) as logger:
# Callbacks
# =============================================================================
# Checkpoint Saving
checkpoint_callback = ModelCheckpoint(
filepath=str(logger.log_dir / 'ckpt_weights'),
verbose=True, save_top_k=0,
)
# =============================================================================
# Early Stopping
# TODO: For This to work, one must set a validation step and End Eval and Score
early_stopping_callback = EarlyStopping(
monitor='val_loss',
min_delta=0.0,
patience=0,
)
# Model
# =============================================================================
# Init
model: LightningBaseModule = config_obj.model_class(config_obj.model_paramters)
model.init_weights(torch.nn.init.xavier_normal_)
# Trainer
# =============================================================================
trainer = Trainer(max_epochs=config_obj.train.epochs,
show_progress_bar=True,
weights_save_path=logger.log_dir,
gpus=[0] if torch.cuda.is_available() else None,
check_val_every_n_epoch=10,
# num_sanity_val_steps=config_obj.train.num_sanity_val_steps,
# row_log_interval=(model.n_train_batches * 0.1), # TODO: Better Value / Setting
# log_save_interval=(model.n_train_batches * 0.2), # TODO: Better Value / Setting
checkpoint_callback=checkpoint_callback,
logger=logger,
fast_dev_run=config_obj.main.debug,
early_stop_callback=None
)
# Train It
trainer.fit(model)
# Save the last state & all parameters
trainer.save_checkpoint(config_obj.exp_path.log_dir / 'weights.ckpt')
model.save_to_disk(config_obj.exp_path)
# Evaluate It
if config_obj.main.eval:
trainer.test()
return model
if __name__ == "__main__":
from _templates.new_project._parameters import args
config = Config.read_namespace(args)
trained_model = run_lightning_loop(config)