ml_lib/audio_toolset/audio_to_mel_dataset.py
2021-03-04 12:01:08 +01:00

72 lines
2.7 KiB
Python

import sys
from pathlib import Path
import pickle
from abc import ABC
from torch.utils.data import Dataset
from torchvision.transforms import Compose
from ml_lib.audio_toolset.audio_io import LibrosaAudioToMel, MelToImage
from ml_lib.audio_toolset.mel_dataset import TorchMelDataset
import librosa
class LibrosaAudioToMelDataset(Dataset):
@property
def audio_file_duration(self):
return librosa.get_duration(sr=self.mel_kwargs.get('sr', None), filename=self.audio_path)
@property
def sampling_rate(self):
return self.mel_kwargs.get('sr', None)
def __init__(self, audio_file_path, label, sample_segment_len=0, sample_hop_len=0, reset=False,
audio_augmentations=None, mel_augmentations=None, mel_kwargs=None, **kwargs):
super(LibrosaAudioToMelDataset, self).__init__()
# audio_file, sampling_rate = librosa.load(self.audio_path, sr=sampling_rate)
mel_kwargs.update(sr=mel_kwargs.get('sr', None) or librosa.get_samplerate(audio_file_path))
self.mel_kwargs = mel_kwargs
self.reset = reset
self.audio_path = Path(audio_file_path)
mel_folder_suffix = self.audio_path.parent.parent.name
self.mel_file_path = Path(str(self.audio_path)
.replace(mel_folder_suffix, f'{mel_folder_suffix}_mel_folder')
.replace(self.audio_path.suffix, '.npy'))
self.audio_augmentations = audio_augmentations
self.dataset = TorchMelDataset(self.mel_file_path, sample_segment_len, sample_hop_len, label,
self.audio_file_duration, mel_kwargs['sr'], mel_kwargs['hop_length'],
mel_kwargs['n_mels'], transform=mel_augmentations)
self._mel_transform = Compose([LibrosaAudioToMel(**mel_kwargs),
MelToImage()
])
def __getitem__(self, item):
return self.dataset[item]
def __len__(self):
return len(self.dataset)
def build_mel(self):
if self.reset:
self.mel_file_path.unlink(missing_ok=True)
if not self.mel_file_path.exists():
self.mel_file_path.parent.mkdir(parents=True, exist_ok=True)
with self.audio_path.open(mode='rb') as audio_file:
raw_sample, _ = librosa.core.load(audio_file, sr=self.sampling_rate)
mel_sample = self._mel_transform(raw_sample)
with self.mel_file_path.open('wb') as mel_file:
pickle.dump(mel_sample, mel_file, protocol=pickle.HIGHEST_PROTOCOL)
else:
pass
return self.mel_file_path.exists()