Transformer running

This commit is contained in:
Steffen Illium 2021-03-04 12:01:08 +01:00
parent b5e3e5aec1
commit f89f0f8528
14 changed files with 349 additions and 80 deletions

View File

@ -9,7 +9,7 @@ from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
from ml_lib.modules.util import LightningBaseModule
from ml_lib.utils.config import Config
from ml_lib.utils.logging import Logger
from ml_lib.utils.loggers import Logger
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=UserWarning)

0
additions/__init__.py Normal file
View File

43
additions/losses.py Normal file
View File

@ -0,0 +1,43 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
class FocalLoss(nn.modules.loss._WeightedLoss):
def __init__(self, weight=None, gamma=2,reduction='mean'):
super(FocalLoss, self).__init__(weight,reduction=reduction)
self.gamma = gamma
self.weight = weight # weight parameter will act as the alpha parameter to balance class weights
def forward(self, input, target):
ce_loss = F.cross_entropy(input, target, reduction=self.reduction, weight=self.weight)
pt = torch.exp(-ce_loss)
focal_loss = ((1 - pt) ** self.gamma * ce_loss).mean()
return focal_loss
class FocalLossRob(nn.Module):
# taken from https://github.com/mathiaszinnen/focal_loss_torch/blob/main/focal_loss/focal_loss.py
def __init__(self, alpha=1, gamma=2, reduction: str = 'mean'):
super().__init__()
if reduction not in ['mean', 'none', 'sum']:
raise NotImplementedError('Reduction {} not implemented.'.format(reduction))
self.reduction = reduction
self.alpha = alpha
self.gamma = gamma
def forward(self, x, target):
x = x.clamp(1e-7, 1. - 1e-7) # own addition
p_t = torch.where(target == 1, x, 1-x)
fl = - 1 * (1 - p_t) ** self.gamma * torch.log(p_t)
fl = torch.where(target == 1, fl * self.alpha, fl)
return self._reduce(fl)
def _reduce(self, x):
if self.reduction == 'mean':
return x.mean()
elif self.reduction == 'sum':
return x.sum()
else:
return x

View File

@ -60,7 +60,8 @@ class LibrosaAudioToMelDataset(Dataset):
self.mel_file_path.unlink(missing_ok=True)
if not self.mel_file_path.exists():
self.mel_file_path.parent.mkdir(parents=True, exist_ok=True)
raw_sample, _ = librosa.core.load(self.audio_path, sr=self.sampling_rate)
with self.audio_path.open(mode='rb') as audio_file:
raw_sample, _ = librosa.core.load(audio_file, sr=self.sampling_rate)
mel_sample = self._mel_transform(raw_sample)
with self.mel_file_path.open('wb') as mel_file:
pickle.dump(mel_sample, mel_file, protocol=pickle.HIGHEST_PROTOCOL)

View File

@ -22,10 +22,12 @@ class TorchMelDataset(Dataset):
self.mel_hop_len = int(mel_hop_len)
self.sub_segment_hop_len = int(sub_segment_hop_len)
self.n = int((self.sampling_rate / self.mel_hop_len) * self.audio_file_len + 1)
if self.sub_segment_len and self.sub_segment_hop_len:
if self.sub_segment_len and self.sub_segment_hop_len and (self.n - self.sub_segment_len) > 0:
self.offsets = list(range(0, self.n - self.sub_segment_len, self.sub_segment_hop_len))
else:
self.offsets = [0]
if len(self) == 0:
print('what happend here')
self.label = label
self.transform = transform

View File

@ -2,7 +2,9 @@ from itertools import cycle
import numpy as np
import torch
from sklearn.metrics import f1_score, roc_curve, auc, roc_auc_score, ConfusionMatrixDisplay, confusion_matrix
from pytorch_lightning.metrics import Recall
from sklearn.metrics import f1_score, roc_curve, auc, roc_auc_score, ConfusionMatrixDisplay, confusion_matrix, \
recall_score
from ml_lib.metrics._base_score import _BaseScores
from ml_lib.utils.tools import to_one_hot
@ -16,20 +18,21 @@ class MultiClassScores(_BaseScores):
super(MultiClassScores, self).__init__(*args)
pass
def __call__(self, outputs):
def __call__(self, outputs, class_names=None):
summary_dict = dict()
class_names = class_names or range(self.model.params.n_classes)
#######################################################################################
# Additional Score - UAR - ROC - Conf. Matrix - F1
#######################################################################################
#
# INIT
y_true = torch.cat([output['batch_y'] for output in outputs]).cpu().numpy()
y_true_one_hot = to_one_hot(y_true, self.model.n_classes)
y_true_one_hot = to_one_hot(y_true, self.model.params.n_classes)
y_pred = torch.cat([output['y'] for output in outputs]).squeeze().cpu().float().numpy()
y_pred_max = np.argmax(y_pred, axis=1)
class_names = {val: key for key, val in self.model.dataset.test_dataset.classes.items()}
class_names = {val: key for val, key in enumerate(class_names)}
######################################################################################
#
# F1 SCORE
@ -38,7 +41,12 @@ class MultiClassScores(_BaseScores):
macro_f1_score = f1_score(y_true, y_pred_max, labels=None, pos_label=1, average='macro', sample_weight=None,
zero_division=True)
summary_dict.update(dict(micro_f1_score=micro_f1_score, macro_f1_score=macro_f1_score))
######################################################################################
#
# Unweichted Average Recall
uar = recall_score(y_true, y_pred_max, labels=[0, 1, 2, 3, 4], average='macro',
sample_weight=None, zero_division='warn')
summary_dict.update(dict(uar_score=uar))
#######################################################################################
#
# ROC Curve
@ -47,7 +55,7 @@ class MultiClassScores(_BaseScores):
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(self.model.n_classes):
for i in range(self.model.params.n_classes):
fpr[i], tpr[i], _ = roc_curve(y_true_one_hot[:, i], y_pred[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
@ -56,15 +64,15 @@ class MultiClassScores(_BaseScores):
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
# First aggregate all false positive rates
all_fpr = np.unique(np.concatenate([fpr[i] for i in range(self.model.n_classes)]))
all_fpr = np.unique(np.concatenate([fpr[i] for i in range(self.model.params.n_classes)]))
# Then interpolate all ROC curves at this points
mean_tpr = np.zeros_like(all_fpr)
for i in range(self.model.n_classes):
for i in range(self.model.params.n_classes):
mean_tpr += np.interp(all_fpr, fpr[i], tpr[i])
# Finally average it and compute AUC
mean_tpr /= self.model.n_classes
mean_tpr /= self.model.params.n_classes
fpr["macro"] = all_fpr
tpr["macro"] = mean_tpr
@ -83,7 +91,7 @@ class MultiClassScores(_BaseScores):
colors = cycle(['firebrick', 'orangered', 'gold', 'olive', 'limegreen', 'aqua',
'dodgerblue', 'slategrey', 'royalblue', 'indigo', 'fuchsia'], )
for i, color in zip(range(self.model.n_classes), colors):
for i, color in zip(range(self.model.params.n_classes), colors):
plt.plot(fpr[i], tpr[i], color=color, lw=2, label=f'{class_names[i]} ({round(roc_auc[i], 2)})')
plt.plot([0, 1], [0, 1], 'k--', lw=2)
@ -116,9 +124,9 @@ class MultiClassScores(_BaseScores):
fig1, ax1 = plt.subplots(dpi=96)
cm = confusion_matrix([class_names[x] for x in y_true], [class_names[x] for x in y_pred_max],
labels=[class_names[key] for key in class_names.keys()],
normalize='all')
normalize='true')
disp = ConfusionMatrixDisplay(confusion_matrix=cm,
display_labels=[class_names[i] for i in range(self.model.n_classes)]
display_labels=[class_names[i] for i in range(self.model.params.n_classes)]
)
disp.plot(include_values=True, ax=ax1)

View File

@ -22,8 +22,8 @@ DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
###################
class LinearModule(ShapeMixin, nn.Module):
def __init__(self, in_shape, out_features, bias=True, activation=None,
norm=False, dropout: Union[int, float] = 0, **kwargs):
def __init__(self, in_shape, out_features, use_bias=True, activation=None,
use_norm=False, dropout: Union[int, float] = 0, **kwargs):
if list(kwargs.keys()):
warnings.warn(f'The following arguments have been ignored: \n {list(kwargs.keys())}')
super(LinearModule, self).__init__()
@ -31,8 +31,8 @@ class LinearModule(ShapeMixin, nn.Module):
self.in_shape = in_shape
self.flat = Flatten(self.in_shape) if isinstance(self.in_shape, (tuple, list)) else F_x(in_shape)
self.dropout = nn.Dropout(dropout) if dropout else F_x(self.flat.shape)
self.norm = nn.BatchNorm1d(self.flat.shape) if norm else F_x(self.flat.shape)
self.linear = nn.Linear(self.flat.shape, out_features, bias=bias)
self.norm = nn.LayerNorm(self.flat.shape) if use_norm else F_x(self.flat.shape)
self.linear = nn.Linear(self.flat.shape, out_features, bias=use_bias)
self.activation = activation() if activation else F_x(self.linear.out_features)
def forward(self, x):
@ -47,13 +47,14 @@ class LinearModule(ShapeMixin, nn.Module):
class ConvModule(ShapeMixin, nn.Module):
def __init__(self, in_shape, conv_filters, conv_kernel, activation: nn.Module = nn.ELU, pooling_size=None,
bias=True, norm=False, dropout: Union[int, float] = 0, trainable: bool = True,
bias=True, use_norm=False, dropout: Union[int, float] = 0, trainable: bool = True,
conv_class=nn.Conv2d, conv_stride=1, conv_padding=0, **kwargs):
super(ConvModule, self).__init__()
assert isinstance(in_shape, (tuple, list)), f'"in_shape" should be a [list, tuple], but was {type(in_shape)}'
assert len(in_shape) == 3, f'Length should be 3, but was {len(in_shape)}'
if len(kwargs.keys()):
warnings.warn(f'The following arguments have been ignored: \n {list(kwargs.keys())}')
if norm and not trainable:
if use_norm and not trainable:
warnings.warn('You set this module to be not trainable but the running norm is active.\n' +
'We set it to "eval" mode.\n' +
'Keep this in mind if you do a finetunning or retraining step.'
@ -72,9 +73,9 @@ class ConvModule(ShapeMixin, nn.Module):
# Modules
self.activation = activation() or F_x(None)
self.norm = nn.LayerNorm(self.in_shape, eps=1e-04) if use_norm else F_x(None)
self.dropout = nn.Dropout2d(dropout) if dropout else F_x(None)
self.pooling = nn.MaxPool2d(pooling_size) if pooling_size else F_x(None)
self.norm = nn.BatchNorm2d(in_channels, eps=1e-04) if norm else F_x(None)
self.conv = conv_class(in_channels, self.conv_filters, self.conv_kernel, bias=bias,
padding=self.padding, stride=self.stride
)
@ -134,7 +135,7 @@ class DeConvModule(ShapeMixin, nn.Module):
def __init__(self, in_shape, conv_filters, conv_kernel, conv_stride=1, conv_padding=0,
dropout: Union[int, float] = 0, autopad=0,
activation: Union[None, nn.Module] = nn.ReLU, interpolation_scale=0,
bias=True, norm=False, **kwargs):
bias=True, use_norm=False, **kwargs):
super(DeConvModule, self).__init__()
warnings.warn(f'The following arguments have been ignored: \n {list(kwargs.keys())}')
in_channels, height, width = in_shape[0], in_shape[1], in_shape[2]
@ -146,7 +147,7 @@ class DeConvModule(ShapeMixin, nn.Module):
self.autopad = AutoPad() if autopad else lambda x: x
self.interpolation = Interpolate(scale_factor=interpolation_scale) if interpolation_scale else lambda x: x
self.norm = nn.BatchNorm2d(in_channels, eps=1e-04) if norm else F_x(self.in_shape)
self.norm = nn.LayerNorm(in_channels, eps=1e-04) if use_norm else F_x(self.in_shape)
self.dropout = nn.Dropout2d(dropout) if dropout else F_x(self.in_shape)
self.de_conv = nn.ConvTranspose2d(in_channels, self.conv_filters, self.conv_kernel, bias=bias,
padding=self.padding, stride=self.stride)
@ -166,14 +167,13 @@ class DeConvModule(ShapeMixin, nn.Module):
class ResidualModule(ShapeMixin, nn.Module):
def __init__(self, in_shape, module_class, n, norm=False, **module_parameters):
def __init__(self, in_shape, module_class, n, use_norm=False, **module_parameters):
assert n >= 1
super(ResidualModule, self).__init__()
self.in_shape = in_shape
module_parameters.update(in_shape=in_shape)
if norm:
norm = nn.BatchNorm1d if len(self.in_shape) <= 2 else nn.BatchNorm2d
self.norm = norm(self.in_shape if isinstance(self.in_shape, int) else self.in_shape[0])
if use_norm:
self.norm = nn.LayerNorm(self.in_shape if isinstance(self.in_shape, int) else self.in_shape[0])
else:
self.norm = F_x(self.in_shape)
self.activation = module_parameters.get('activation', None)
@ -216,13 +216,14 @@ class RecurrentModule(ShapeMixin, nn.Module):
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout=0.):
def __init__(self, dim, hidden_dim, dropout=0., activation=nn.GELU):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
activation() or F_x(None),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
activation() or F_x(None),
nn.Dropout(dropout)
)
@ -272,18 +273,20 @@ class Attention(nn.Module):
class TransformerModule(ShapeMixin, nn.Module):
def __init__(self, in_shape, depth, heads, mlp_dim, dropout=None, use_norm=False, activation='gelu'):
def __init__(self, in_shape, depth, heads, mlp_dim, dropout=None, use_norm=False,
activation=nn.GELU, use_residual=True):
super(TransformerModule, self).__init__()
self.in_shape = in_shape
self.use_residual = use_residual
self.flat = Flatten(self.in_shape) if isinstance(self.in_shape, (tuple, list)) else F_x(in_shape)
self.layers = nn.ModuleList([])
self.embedding_dim = self.flat.flat_shape
self.norm = nn.LayerNorm(self.embedding_dim)
self.norm = nn.LayerNorm(self.embedding_dim) if use_norm else F_x(self.embedding_dim)
self.attns = nn.ModuleList([Attention(self.embedding_dim, heads=heads, dropout=dropout) for _ in range(depth)])
self.mlps = nn.ModuleList([FeedForward(self.embedding_dim, mlp_dim, dropout=dropout) for _ in range(depth)])
self.mlps = nn.ModuleList([FeedForward(self.embedding_dim, mlp_dim, dropout=dropout, activation=activation)
for _ in range(depth)])
def forward(self, x, mask=None, return_attn_weights=False, **_):
tensor = self.flat(x)
@ -297,11 +300,11 @@ class TransformerModule(ShapeMixin, nn.Module):
attn_weights.append(attn_weight)
else:
attn_tensor = attn(attn_tensor, mask=mask)
tensor = attn_tensor + tensor
tensor = tensor + attn_tensor if self.use_residual else attn_tensor
# MLP
mlp_tensor = self.norm(tensor)
mlp_tensor = mlp(mlp_tensor)
tensor = tensor + mlp_tensor
tensor = tensor + mlp_tensor if self.use_residual else mlp_tensor
return (tensor, attn_weights) if return_attn_weights else tensor

View File

@ -183,10 +183,11 @@ class BaseCNNEncoder(ShapeMixin, nn.Module):
# noinspection PyUnresolvedReferences
def __init__(self, in_shape, lat_dim=256, use_bias=True, use_norm=False, dropout: Union[int, float] = 0,
latent_activation: Union[nn.Module, None] = None, activation: nn.Module = nn.ELU,
filters: List[int] = None, kernels: List[int] = None, **kwargs):
filters: List[int] = None, kernels: Union[List[int], int, None] = None, **kwargs):
super(BaseCNNEncoder, self).__init__()
assert filters, '"Filters" has to be a list of int'
assert kernels, '"Kernels" has to be a list of int'
kernels = kernels or [3] * len(filters)
kernels = kernels if not isinstance(kernels, int) else [kernels] * len(filters)
assert len(kernels) == len(filters), 'Length of "Filters" and "Kernels" has to be same.'
# Optional Padding for odd image-sizes

View File

@ -1,7 +1,5 @@
import inspect
from argparse import ArgumentParser
from functools import reduce
from matplotlib import pyplot as plt
from abc import ABC
from pathlib import Path
@ -12,14 +10,77 @@ from pytorch_lightning.utilities import argparse_utils
from torch import nn
from torch.nn import functional as F, Unfold
from sklearn.metrics import ConfusionMatrixDisplay
# Utility - Modules
###################
from ..utils.model_io import ModelParameters
from ..utils.tools import locate_and_import_class, add_argparse_args
from ..utils.tools import add_argparse_args
try:
import pytorch_lightning as pl
class PLMetrics(pl.metrics.Metric):
def __init__(self, n_classes, tag=''):
super(PLMetrics, self).__init__()
self.n_classes = n_classes
self.tag = tag
self.accuracy_score = pl.metrics.Accuracy(compute_on_step=False)
self.precision = pl.metrics.Precision(num_classes=self.n_classes, average='macro', compute_on_step=False)
self.recall = pl.metrics.Recall(num_classes=self.n_classes, average='macro', compute_on_step=False)
self.confusion_matrix = pl.metrics.ConfusionMatrix(self.n_classes, normalize='true', compute_on_step=False)
# self.precision_recall_curve = pl.metrics.PrecisionRecallCurve(self.n_classes, compute_on_step=False)
# self.average_prec = pl.metrics.AveragePrecision(self.n_classes, compute_on_step=True)
# self.roc = pl.metrics.ROC(self.n_classes, compute_on_step=False)
self.fbeta = pl.metrics.FBeta(self.n_classes, average='macro', compute_on_step=False)
self.f1 = pl.metrics.F1(self.n_classes, average='macro', compute_on_step=False)
def __iter__(self):
return iter(((name, metric) for name, metric in self._modules.items()))
def update(self, preds, target) -> None:
for _, metric in self:
metric.update(preds, target)
def reset(self) -> None:
for _, metric in self:
metric.reset()
def compute(self) -> dict:
tag = f'{self.tag}_' if self.tag else ''
return {f'{tag}{metric_name}_score': metric.compute() for metric_name, metric in self}
def compute_and_prepare(self):
pl_metrics = self.compute()
images_from_metrics = dict()
for metric_name in list(pl_metrics.keys()):
if 'curve' in metric_name:
continue
roc_curve = pl_metrics.pop(metric_name)
print('debug_point')
elif 'matrix' in metric_name:
matrix = pl_metrics.pop(metric_name)
fig1, ax1 = plt.subplots(dpi=96)
disp = ConfusionMatrixDisplay(confusion_matrix=matrix.cpu().numpy(),
display_labels=[i for i in range(self.n_classes)]
)
disp.plot(include_values=True, ax=ax1)
images_from_metrics[metric_name] = fig1
elif 'ROC' in metric_name:
continue
roc = pl_metrics.pop(metric_name)
print('debug_point')
else:
pl_metrics[metric_name] = pl_metrics[metric_name].cpu().item()
return pl_metrics, images_from_metrics
class LightningBaseModule(pl.LightningModule, ABC):
@classmethod
@ -49,6 +110,9 @@ try:
self._weight_init = weight_init
self.params = ModelParameters(model_parameters)
self.metrics = PLMetrics(self.params.n_classes, tag='PL')
pass
def size(self):
return self.shape

View File

@ -25,5 +25,12 @@ class _BaseDataModule(LightningDataModule):
self.datasets = dict()
def transfer_batch_to_device(self, batch, device):
if isinstance(batch, list):
for idx, item in enumerate(batch):
try:
batch[idx] = item.to(device)
except (AttributeError, RuntimeError):
continue
return batch
else:
return batch.to(device)

View File

@ -1,6 +1,9 @@
import ast
import configparser
from pathlib import Path
from typing import Mapping, Dict
import torch
from copy import deepcopy
from abc import ABC
@ -9,8 +12,67 @@ from argparse import Namespace, ArgumentParser
from collections import defaultdict
from configparser import ConfigParser, DuplicateSectionError
import hashlib
from pytorch_lightning import Trainer
from ml_lib.utils.tools import locate_and_import_class
from ml_lib.utils.loggers import Logger
from ml_lib.utils.tools import locate_and_import_class, auto_cast
# Argument Parser and default Values
# =============================================================================
def parse_comandline_args_add_defaults(filepath, overrides=None):
# Parse Command Line
parser = ArgumentParser()
parser.add_argument('--model_name', type=str)
parser.add_argument('--data_name', type=str)
# Load Defaults from _parameters.ini file
config = configparser.ConfigParser()
config.read(str(filepath))
new_defaults = dict()
for key in ['project', 'train', 'data']:
defaults = config[key]
new_defaults.update({key: auto_cast(val) for key, val in defaults.items()})
if new_defaults['debug']:
new_defaults.update(
max_epochs=2,
max_steps=2 # The seems to be the new "fast_dev_run"
)
args, _ = parser.parse_known_args()
overrides = overrides or dict()
default_data = overrides.get('data_name', None) or new_defaults['data_name']
default_model = overrides.get('model_name', None) or new_defaults['model_name']
data_name = args.__dict__.get('data_name', None) or default_data
model_name = args.__dict__.get('model_name', None) or default_model
new_defaults.update({key: auto_cast(val) for key, val in config[model_name].items()})
found_data_class = locate_and_import_class(data_name, 'datasets')
found_model_class = locate_and_import_class(model_name, 'models')
for module in [Logger, Trainer, found_data_class, found_model_class]:
parser = module.add_argparse_args(parser)
args, _ = parser.parse_known_args(namespace=Namespace(**new_defaults))
args = vars(args)
args.update({key: auto_cast(val) for key, val in args.items()})
args.update(gpus=[0] if torch.cuda.is_available() and not args['debug'] else None,
row_log_interval=1000, # TODO: Better Value / Setting
log_save_interval=10000, # TODO: Better Value / Setting
auto_lr_find=not args['debug'],
weights_summary='top',
check_val_every_n_epoch=1 if args['debug'] else args.get('check_val_every_n_epoch', 1)
)
if overrides is not None and isinstance(overrides, (Mapping, Dict)):
args.update(**overrides)
return args, found_data_class, found_model_class
def is_jsonable(x):

30
utils/equal_sampler.py Normal file
View File

@ -0,0 +1,30 @@
import random
from typing import Iterator, Sequence
from torch.utils.data import Sampler
from torch.utils.data.sampler import T_co
# noinspection PyMissingConstructor
class EqualSampler(Sampler):
def __init__(self, idxs_per_class: Sequence[Sequence[float]], replacement: bool = True) -> None:
self.replacement = replacement
self.idxs_per_class = idxs_per_class
self.len_largest_class = max([len(x) for x in self.idxs_per_class])
def __iter__(self) -> Iterator[T_co]:
return iter(random.choice(self.idxs_per_class[random.randint(0, len(self.idxs_per_class)-1)])
for _ in range(len(self)))
def __len__(self):
return self.len_largest_class * len(self.idxs_per_class)
if __name__ == '__main__':
es = EqualSampler([list(range(5)), list(range(5, 10)), list(range(10, 12))])
for i in es:
print(i)
pass

View File

@ -1,5 +1,6 @@
import inspect
from argparse import ArgumentParser
from copy import deepcopy
import hashlib
from pathlib import Path
import os
@ -17,11 +18,34 @@ class Logger(LightningLoggerBase):
@classmethod
def from_argparse_args(cls, args, **kwargs):
return argparse_utils.from_argparse_args(cls, args, **kwargs)
cleaned_args = deepcopy(args.__dict__)
# Clean Seed and other attributes
# TODO: Find a better way in cleaning this
for attr in ['seed', 'num_worker', 'debug', 'eval', 'owner', 'data_root', 'check_val_every_n_epoch',
'reset', 'outpath', 'version', 'gpus', 'neptune_key', 'num_sanity_val_steps', 'tpu_cores',
'progress_bar_refresh_rate', 'log_save_interval', 'row_log_interval']:
try:
del cleaned_args[attr]
except KeyError:
pass
kwargs.update(params=cleaned_args)
new_logger = argparse_utils.from_argparse_args(cls, args, **kwargs)
return new_logger
@property
def name(self) -> str:
return self._name
def fingerprint(self):
h = hashlib.md5()
h.update(self._finger_print_string.encode())
fingerprint = h.hexdigest()
return fingerprint
@property
def name(self):
short_name = "".join(c for c in self.model_name if c.isupper())
return f'{short_name}_{self.fingerprint}'
media_dir = 'media'
@ -42,7 +66,12 @@ class Logger(LightningLoggerBase):
@property
def project_name(self):
return f"{self.owner}/{self.name.replace('_', '-')}"
return f"{self.owner}/{self.projeect_root.replace('_', '-')}"
@property
def projeect_root(self):
root_path = Path(os.getcwd()).name if not self.debug else 'test'
return root_path
@property
def version(self):
@ -56,7 +85,7 @@ class Logger(LightningLoggerBase):
def outpath(self):
return Path(self.root_out) / self.model_name
def __init__(self, owner, neptune_key, model_name, project_name='', outpath='output', seed=69, debug=False):
def __init__(self, owner, neptune_key, model_name, outpath='output', seed=69, debug=False, params=None):
"""
params (dict|None): Optional. Parameters of the experiment. After experiment creation params are read-only.
Parameters are displayed in the experiments Parameters section and each key-value pair can be
@ -71,51 +100,67 @@ class Logger(LightningLoggerBase):
super(Logger, self).__init__()
self.debug = debug
self._name = project_name or Path(os.getcwd()).name if not self.debug else 'test'
self.owner = owner if not self.debug else 'testuser'
self.neptune_key = neptune_key if not self.debug else 'XXX'
self.root_out = outpath if not self.debug else 'debug_out'
self.params = params
self.seed = seed
self.model_name = model_name
if self.params:
_, fingerprint_tuple = zip(*sorted(self.params.items(), key=lambda tup: tup[0]))
self._finger_print_string = str(fingerprint_tuple)
else:
self._finger_print_string = str((self.owner, self.root_out, self.seed, self.model_name, self.debug))
self.params.update(fingerprint=self.fingerprint)
self._csvlogger_kwargs = dict(save_dir=self.outpath, version=self.version, name=self.name)
self._neptune_kwargs = dict(offline_mode=self.debug,
params=self.params,
api_key=self.neptune_key,
experiment_name=self.name,
# tags=?,
project_name=self.project_name)
try:
self.neptunelogger = NeptuneLogger(**self._neptune_kwargs)
except ProjectNotFound as e:
print(f'The project "{self.project_name}"')
print(f'The project "{self.project_name}" does not exist! Create it or check your spelling.')
print(e)
self.csvlogger = CSVLogger(**self._csvlogger_kwargs)
if self.params:
self.log_hyperparams(self.params)
def close(self):
self.csvlogger.close()
self.neptunelogger.close()
def set_fingerprint_string(self, fingerprint_str):
self._finger_print_string = fingerprint_str
def log_text(self, name, text, **_):
# TODO Implement Offline variant.
self.neptunelogger.log_text(name, text)
def log_hyperparams(self, params):
self.neptunelogger.log_hyperparams(params)
self.csvlogger.log_hyperparams(params)
pass
def log_metric(self, metric_name, metric_value, step=None, **kwargs):
self.csvlogger.log_metrics(dict(metric_name=metric_value, **kwargs), step=step, **kwargs)
self.neptunelogger.log_metric(metric_name, metric_value, step=step, **kwargs)
pass
def log_metrics(self, metrics, step=None):
self.neptunelogger.log_metrics(metrics, step=step)
self.csvlogger.log_metrics(metrics, step=step)
pass
def close(self):
self.csvlogger.close()
self.neptunelogger.close()
def log_text(self, name, text, **_):
# TODO Implement Offline variant.
self.neptunelogger.log_text(name, text)
def log_metric(self, metric_name, metric_value, **kwargs):
self.csvlogger.log_metrics(dict(metric_name=metric_value))
self.neptunelogger.log_metric(metric_name, metric_value, **kwargs)
def log_image(self, name, image, ext='png', **kwargs):
step = kwargs.get('step', None)
image_name = f'{step}_{name}' if step is not None else name
def log_image(self, name, image, ext='png', step=None, **kwargs):
image_name = f'{"0" * (4 - len(str(step)))}{step}_{name}' if step is not None else name
image_path = self.log_dir / self.media_dir / f'{image_name}.{ext[1:] if ext.startswith(".") else ext}'
(self.log_dir / self.media_dir).mkdir(parents=True, exist_ok=True)
image.savefig(image_path, bbox_inches='tight', pad_inches=0)

View File

@ -2,7 +2,7 @@ import importlib
import inspect
import pickle
import shelve
from argparse import ArgumentParser
from argparse import ArgumentParser, ArgumentError
from ast import literal_eval
from pathlib import Path, PurePath
from typing import Union
@ -70,6 +70,7 @@ def add_argparse_args(cls, parent_parser):
full_arg_spec = inspect.getfullargspec(cls.__init__)
n_non_defaults = len(full_arg_spec.args) - (len(full_arg_spec.defaults) if full_arg_spec.defaults else 0)
for idx, argument in enumerate(full_arg_spec.args):
try:
if argument == 'self':
continue
if idx < n_non_defaults:
@ -80,4 +81,6 @@ def add_argparse_args(cls, parent_parser):
type=argument_type,
default=full_arg_spec.defaults[idx - n_non_defaults]
)
except ArgumentError:
continue
return parser