Audio Dataset
This commit is contained in:
30
audio_toolset/mel_dataset.py
Normal file
30
audio_toolset/mel_dataset.py
Normal file
@ -0,0 +1,30 @@
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
from torch.utils.data import Dataset
|
||||
|
||||
|
||||
class TorchMelDataset(Dataset):
|
||||
def __init__(self, identifier, mel_path, segment_len, hop_len, label, padding=0, transform=None):
|
||||
self.padding = padding
|
||||
self.path = next(iter(Path(mel_path).glob(f'{identifier}_*')))
|
||||
self.segment_len = segment_len
|
||||
self.m, self.n = str(self.path).split('_')[-2:] # get spectrogram dimensions
|
||||
self.n = int(self.n.split('.', 1)[0]) # remove .npy
|
||||
self.m, self.n = (int(i) for i in (self.m, self.n))
|
||||
self.offsets = list(range(0, self.n - segment_len, hop_len))
|
||||
self.label = label
|
||||
self.transform = transform
|
||||
|
||||
def __getitem__(self, item):
|
||||
start = self.offsets[item]
|
||||
mel_spec = np.load(str(self.path), allow_pickle=True)
|
||||
if self.padding > 0:
|
||||
mel_spec = np.pad(mel_spec, pad_width=[(0, 0), (self.padding // 2, self.padding // 2)], mode='mean')
|
||||
snippet = mel_spec[:, start: start + self.segment_len]
|
||||
if self.transform:
|
||||
snippet = self.transform(snippet)
|
||||
return snippet, self.label
|
||||
|
||||
def __len__(self):
|
||||
return len(self.offsets)
|
Reference in New Issue
Block a user