Audio Dataset

This commit is contained in:
Si11ium 2020-12-01 16:37:15 +01:00
parent cfeea05673
commit c6fdaa24aa
7 changed files with 81 additions and 6 deletions

View File

@ -15,6 +15,9 @@ class Speed(object):
# noinspection PyTypeChecker
self.max_amount = min(max(0, max_amount), 1)
def __repr__(self):
return f'{self.__class__.__name__}({self.__dict__})'
def __call__(self, x):
if self.speed_min == 1 and self.speed_max == 1:
return x

View File

@ -37,6 +37,9 @@ class MFCC(object):
def __init__(self, **kwargs):
self.__dict__.update(kwargs)
def __repr__(self):
return f'{self.__class__.__name__}({self.__dict__})'
def __call__(self, y):
mfcc = librosa.feature.mfcc(y, **self.__dict__)
return mfcc
@ -47,6 +50,9 @@ class NormalizeLocal(object):
self.cache: np.ndarray
pass
def __repr__(self):
return f'{self.__class__.__name__}({self.__dict__})'
def __call__(self, x: np.ndarray):
mean = x.mean()
std = x.std() + 0.0001
@ -65,6 +71,9 @@ class NormalizeMelband(object):
self.cache: np.ndarray
pass
def __repr__(self):
return f'{self.__class__.__name__}({self.__dict__})'
def __call__(self, x: np.ndarray):
mean = x.mean(-1).unsqueeze(-1)
std = x.std(-1).unsqueeze(-1)
@ -98,6 +107,9 @@ class PowerToDB(object):
def __init__(self, running_max=False):
self.running_max = 0 if running_max else None
def __repr__(self):
return f'{self.__class__.__name__}({self.__dict__})'
def __call__(self, x):
if self.running_max is not None:
self.running_max = max(np.max(x), self.running_max)
@ -109,6 +121,9 @@ class LowPass(object):
def __init__(self, sr=16000):
self.sr = sr
def __repr__(self):
return f'{self.__class__.__name__}({self.__dict__})'
def __call__(self, x):
return butter_lowpass_filter(x, 1000, 1)
@ -117,6 +132,9 @@ class MelToImage(object):
def __init__(self):
pass
def __repr__(self):
return f'{self.__class__.__name__}({self.__dict__})'
def __call__(self, x):
# Source to Solution: https://stackoverflow.com/a/57204349
mels = np.log(x + 1e-9) # add small number to avoid log(0)

View File

@ -0,0 +1,30 @@
from pathlib import Path
import numpy as np
from torch.utils.data import Dataset
class TorchMelDataset(Dataset):
def __init__(self, identifier, mel_path, segment_len, hop_len, label, padding=0, transform=None):
self.padding = padding
self.path = next(iter(Path(mel_path).glob(f'{identifier}_*')))
self.segment_len = segment_len
self.m, self.n = str(self.path).split('_')[-2:] # get spectrogram dimensions
self.n = int(self.n.split('.', 1)[0]) # remove .npy
self.m, self.n = (int(i) for i in (self.m, self.n))
self.offsets = list(range(0, self.n - segment_len, hop_len))
self.label = label
self.transform = transform
def __getitem__(self, item):
start = self.offsets[item]
mel_spec = np.load(str(self.path), allow_pickle=True)
if self.padding > 0:
mel_spec = np.pad(mel_spec, pad_width=[(0, 0), (self.padding // 2, self.padding // 2)], mode='mean')
snippet = mel_spec[:, start: start + self.segment_len]
if self.transform:
snippet = self.transform(snippet)
return snippet, self.label
def __len__(self):
return len(self.offsets)

View File

@ -8,6 +8,9 @@ class Normalize(object):
def __init__(self, min_db_level: Union[int, float]):
self.min_db_level = min_db_level
def __repr__(self):
return f'{self.__class__.__name__}({self.__dict__})'
def __call__(self, s: np.ndarray) -> np.ndarray:
return np.clip((s - self.min_db_level) / -self.min_db_level, 0, 1)
@ -17,5 +20,8 @@ class DeNormalize(object):
def __init__(self, min_db_level: Union[int, float]):
self.min_db_level = min_db_level
def __repr__(self):
return f'{self.__class__.__name__}({self.__dict__})'
def __call__(self, s: np.ndarray) -> np.ndarray:
return (np.clip(s, 0, 1) * -self.min_db_level) + self.min_db_level

View File

@ -1,5 +1,3 @@
from typing import List
from functools import reduce
from abc import ABC
@ -13,6 +11,7 @@ from torch.nn import functional as F, Unfold
# Utility - Modules
###################
from ..utils.model_io import ModelParameters
from ..utils.tools import locate_and_import_class
try:
import pytorch_lightning as pl
@ -45,6 +44,15 @@ try:
def size(self):
return self.shape
@property
def dataset_class(self):
try:
return locate_and_import_class(self.params.class_name, folder_path='datasets')
except AttributeError as e:
raise AttributeError(f'The dataset alias you provided ("{self.params.class_name}") ' +
f'was not found!\n' +
f'{e}')
def save_to_disk(self, model_path):
Path(model_path, exist_ok=True).mkdir(parents=True, exist_ok=True)
if not (model_path / 'model_class.obj').exists():
@ -83,6 +91,7 @@ try:
except ImportError:
module_types = (nn.Module,)
pl = None
pass # Maybe post a hint to install pytorch-lightning.

View File

@ -92,12 +92,21 @@ class Config(ConfigParser, ABC):
@property
def model_class(self):
try:
return locate_and_import_class(self.model.type)
return locate_and_import_class(self.model.type, folder_path='models')
except AttributeError as e:
raise AttributeError(f'The model alias you provided ("{self.get("model", "type")}") ' +
f'was not found!\n' +
f'{e}')
@property
def data_class(self):
try:
return locate_and_import_class(self.data.class_name, folder_path='datasets')
except AttributeError as e:
raise AttributeError(f'The dataset alias you provided ("{self.get("data", "class_name")}") ' +
f'was not found!\n' +
f'{e}')
# --------------------------------------------------
# TODO: Do this programmatically; This did not work:
# Initialize Default Sections as Property

View File

@ -41,10 +41,10 @@ def check_path(file_path):
assert str(file_path).endswith('.pik')
def locate_and_import_class(class_name, models_location: Union[str, PurePath] = 'models', forceload=False):
def locate_and_import_class(class_name, folder_path: Union[str, PurePath] = ''):
"""Locate an object by name or dotted path, importing as necessary."""
models_location = Path(models_location)
module_paths = [x for x in models_location.rglob('*.py') if x.is_file() and '__init__' not in x.name]
folder_path = Path(folder_path)
module_paths = [x for x in folder_path.rglob('*.py') if x.is_file() and '__init__' not in x.name]
for module_path in module_paths:
mod = importlib.import_module('.'.join([x.replace('.py', '') for x in module_path.parts]))
try: