ml_lib/audio_toolset/mel_dataset.py
2020-12-01 16:37:15 +01:00

30 lines
1.2 KiB
Python

from pathlib import Path
import numpy as np
from torch.utils.data import Dataset
class TorchMelDataset(Dataset):
def __init__(self, identifier, mel_path, segment_len, hop_len, label, padding=0, transform=None):
self.padding = padding
self.path = next(iter(Path(mel_path).glob(f'{identifier}_*')))
self.segment_len = segment_len
self.m, self.n = str(self.path).split('_')[-2:] # get spectrogram dimensions
self.n = int(self.n.split('.', 1)[0]) # remove .npy
self.m, self.n = (int(i) for i in (self.m, self.n))
self.offsets = list(range(0, self.n - segment_len, hop_len))
self.label = label
self.transform = transform
def __getitem__(self, item):
start = self.offsets[item]
mel_spec = np.load(str(self.path), allow_pickle=True)
if self.padding > 0:
mel_spec = np.pad(mel_spec, pad_width=[(0, 0), (self.padding // 2, self.padding // 2)], mode='mean')
snippet = mel_spec[:, start: start + self.segment_len]
if self.transform:
snippet = self.transform(snippet)
return snippet, self.label
def __len__(self):
return len(self.offsets)