torchaudio testing
This commit is contained in:
parent
c6fdaa24aa
commit
62d9eb6e8f
@ -1,3 +1,7 @@
|
||||
from typing import Union
|
||||
|
||||
import torch
|
||||
|
||||
try:
|
||||
import librosa
|
||||
except ImportError: # pragma: no-cover
|
||||
@ -10,9 +14,6 @@ except ImportError: # pragma: no-cover
|
||||
' install it with `pip install scikit-learn`.')
|
||||
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def scale_minmax(x, min_val=0.0, max_val=1.0):
|
||||
x_std = (x - x.min()) / (x.max() - x.min())
|
||||
x_scaled = x_std * (max_val - min_val) + min_val
|
||||
@ -47,13 +48,12 @@ class MFCC(object):
|
||||
|
||||
class NormalizeLocal(object):
|
||||
def __init__(self):
|
||||
self.cache: np.ndarray
|
||||
pass
|
||||
|
||||
def __repr__(self):
|
||||
return f'{self.__class__.__name__}({self.__dict__})'
|
||||
|
||||
def __call__(self, x: np.ndarray):
|
||||
def __call__(self, x: torch.Tensor):
|
||||
mean = x.mean()
|
||||
std = x.std() + 0.0001
|
||||
|
||||
@ -61,37 +61,47 @@ class NormalizeLocal(object):
|
||||
# tensor = tensor.__sub__(mean).__div__(std)
|
||||
# Numpy Version
|
||||
x = (x - mean) / std
|
||||
x[np.isnan(x)] = 0
|
||||
x[np.isinf(x)] = 0
|
||||
|
||||
x[torch.isnan(x)] = 0
|
||||
x[torch.isinf(x)] = 0
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class NormalizeMelband(object):
|
||||
def __init__(self):
|
||||
self.cache: np.ndarray
|
||||
|
||||
pass
|
||||
|
||||
def __repr__(self):
|
||||
return f'{self.__class__.__name__}({self.__dict__})'
|
||||
|
||||
def __call__(self, x: np.ndarray):
|
||||
def __call__(self, x: torch.Tensor):
|
||||
mean = x.mean(-1).unsqueeze(-1)
|
||||
std = x.std(-1).unsqueeze(-1)
|
||||
|
||||
x = x.__sub__(mean).__div__(std)
|
||||
x[np.isnan(x)] = 0
|
||||
x[np.isinf(x)] = 0
|
||||
x[torch.isnan(x)] = 0
|
||||
x[torch.isinf(x)] = 0
|
||||
return x
|
||||
|
||||
|
||||
class AudioToMel(object):
|
||||
class LibrosaAudioToMel(object):
|
||||
def __init__(self, amplitude_to_db=False, power_to_db=False, **mel_kwargs):
|
||||
assert not all([amplitude_to_db, power_to_db]), "Choose amplitude_to_db or power_to_db, not both!"
|
||||
# Mel kwargs are:
|
||||
# sr
|
||||
# n_mels
|
||||
# n_fft
|
||||
# hop_length
|
||||
|
||||
self.mel_kwargs = mel_kwargs
|
||||
self.amplitude_to_db = amplitude_to_db
|
||||
self.power_to_db = power_to_db
|
||||
|
||||
def __call__(self, y):
|
||||
import numpy as np
|
||||
|
||||
mel = librosa.feature.melspectrogram(y, **self.mel_kwargs)
|
||||
if self.amplitude_to_db:
|
||||
mel = librosa.amplitude_to_db(mel, ref=np.max)
|
||||
@ -111,6 +121,7 @@ class PowerToDB(object):
|
||||
return f'{self.__class__.__name__}({self.__dict__})'
|
||||
|
||||
def __call__(self, x):
|
||||
import numpy as np
|
||||
if self.running_max is not None:
|
||||
self.running_max = max(np.max(x), self.running_max)
|
||||
return librosa.power_to_db(x, ref=self.running_max)
|
||||
@ -137,11 +148,11 @@ class MelToImage(object):
|
||||
|
||||
def __call__(self, x):
|
||||
# Source to Solution: https://stackoverflow.com/a/57204349
|
||||
mels = np.log(x + 1e-9) # add small number to avoid log(0)
|
||||
mels = torch.log(x + 1e-9) # add small number to avoid log(0)
|
||||
|
||||
# min-max scale to fit inside 8-bit range
|
||||
img = scale_minmax(mels, 0, 255).astype(np.uint8)
|
||||
img = np.flip(img, axis=0) # put low frequencies at the bottom in image
|
||||
img = 255 - img # invert. make black==more energy
|
||||
img = img.astype(np.float32)
|
||||
img = scale_minmax(mels, 0, 255).int()
|
||||
img = torch.flip(img, dims=(0,)) # put low frequencies at the bottom in image
|
||||
img = torch.as_tensor(255) - img # invert. make black==more energy
|
||||
img = img.float()
|
||||
return img
|
||||
|
163
audio_toolset/audio_to_mel_dataset.py
Normal file
163
audio_toolset/audio_to_mel_dataset.py
Normal file
@ -0,0 +1,163 @@
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import pickle
|
||||
from abc import ABC
|
||||
from torch.utils.data import Dataset
|
||||
from torchvision.transforms import Compose
|
||||
|
||||
from ml_lib.audio_toolset.audio_io import LibrosaAudioToMel, MelToImage
|
||||
from ml_lib.audio_toolset.mel_dataset import TorchMelDataset
|
||||
|
||||
|
||||
class _AudioToMelDataset(Dataset, ABC):
|
||||
|
||||
@property
|
||||
def audio_file_duration(self):
|
||||
raise NotImplementedError
|
||||
|
||||
@property
|
||||
def sampling_rate(self):
|
||||
raise NotImplementedError
|
||||
|
||||
def __init__(self, audio_file_path, label, sample_segment_len=1, sample_hop_len=1, reset=False,
|
||||
audio_augmentations=None, mel_augmentations=None, mel_kwargs=None, **kwargs):
|
||||
self.ignored_kwargs = kwargs
|
||||
self.mel_kwargs = mel_kwargs
|
||||
self.reset = reset
|
||||
self.audio_path = Path(audio_file_path)
|
||||
|
||||
mel_folder_suffix = self.audio_path.parent.parent.name
|
||||
self.mel_file_path = Path(str(self.audio_path)
|
||||
.replace(mel_folder_suffix, f'{mel_folder_suffix}_mel_folder')
|
||||
.replace(self.audio_path.suffix, '.npy'))
|
||||
|
||||
self.audio_augmentations = audio_augmentations
|
||||
|
||||
self.dataset = TorchMelDataset(self.mel_file_path, sample_segment_len, sample_hop_len, label,
|
||||
self.audio_file_duration, mel_kwargs['sample_rate'], mel_kwargs['hop_length'],
|
||||
mel_kwargs['n_mels'], transform=mel_augmentations)
|
||||
|
||||
def _build_mel(self):
|
||||
raise NotImplementedError
|
||||
|
||||
def __getitem__(self, item):
|
||||
try:
|
||||
return self.dataset[item]
|
||||
except FileNotFoundError:
|
||||
assert self._build_mel()
|
||||
return self.dataset[item]
|
||||
|
||||
def __len__(self):
|
||||
return len(self.dataset)
|
||||
|
||||
|
||||
import librosa
|
||||
|
||||
|
||||
class LibrosaAudioToMelDataset(_AudioToMelDataset):
|
||||
|
||||
@property
|
||||
def audio_file_duration(self):
|
||||
return librosa.get_duration(sr=self.mel_kwargs.get('sr', None), filename=self.audio_path)
|
||||
|
||||
@property
|
||||
def sampling_rate(self):
|
||||
return self.mel_kwargs.get('sr', None)
|
||||
|
||||
def __init__(self, audio_file_path, *args, **kwargs):
|
||||
|
||||
audio_file_path = Path(audio_file_path)
|
||||
# audio_file, sampling_rate = librosa.load(self.audio_path, sr=sampling_rate)
|
||||
mel_kwargs = kwargs.get('mel_kwargs', dict())
|
||||
mel_kwargs.update(sr=mel_kwargs.get('sr', None) or librosa.get_samplerate(self.audio_path))
|
||||
kwargs.update(mel_kwargs=mel_kwargs)
|
||||
|
||||
super(LibrosaAudioToMelDataset, self).__init__(audio_file_path, *args, **kwargs)
|
||||
|
||||
self._mel_transform = Compose([LibrosaAudioToMel(**mel_kwargs),
|
||||
MelToImage()
|
||||
])
|
||||
|
||||
|
||||
def _build_mel(self):
|
||||
if self.reset:
|
||||
self.mel_file_path.unlink(missing_ok=True)
|
||||
if not self.mel_file_path.exists():
|
||||
self.mel_file_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
raw_sample, _ = librosa.core.load(self.audio_path, sr=self.sampling_rate)
|
||||
mel_sample = self._mel_transform(raw_sample)
|
||||
with self.mel_file_path.open('wb') as mel_file:
|
||||
pickle.dump(mel_sample, mel_file, protocol=pickle.HIGHEST_PROTOCOL)
|
||||
else:
|
||||
pass
|
||||
|
||||
return self.mel_file_path.exists()
|
||||
|
||||
|
||||
import torchaudio
|
||||
if sys.platform =='windows':
|
||||
torchaudio.set_audio_backend('soundfile')
|
||||
else:
|
||||
torchaudio.set_audio_backend('sox_io')
|
||||
|
||||
|
||||
class PyTorchAudioToMelDataset(_AudioToMelDataset):
|
||||
|
||||
@property
|
||||
def audio_file_duration(self):
|
||||
info_obj = torchaudio.info(self.audio_path)
|
||||
return info_obj.num_frames / info_obj.sample_rate
|
||||
|
||||
@property
|
||||
def sampling_rate(self):
|
||||
return self.mel_kwargs['sample_rate']
|
||||
|
||||
def __init__(self, audio_file_path, *args, **kwargs):
|
||||
super(PyTorchAudioToMelDataset, self).__init__(audio_file_path, *args, **kwargs)
|
||||
|
||||
audio_file_path = Path(audio_file_path)
|
||||
# audio_file, sampling_rate = librosa.load(self.audio_path, sr=sampling_rate)
|
||||
|
||||
from torchaudio.transforms import MelSpectrogram
|
||||
self._mel_transform = Compose([MelSpectrogram(**self.mel_kwargs),
|
||||
MelToImage()
|
||||
])
|
||||
|
||||
def _build_mel(self):
|
||||
if self.reset:
|
||||
self.mel_file_path.unlink(missing_ok=True)
|
||||
if not self.mel_file_path.exists():
|
||||
self.mel_file_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
lock_file = Path(str(self.mel_file_path).replace(self.mel_file_path.suffix, '.lock'))
|
||||
lock_file.touch(exist_ok=False)
|
||||
|
||||
try:
|
||||
audio_sample, sample_rate = torchaudio.load(self.audio_path)
|
||||
except RuntimeError:
|
||||
import soundfile
|
||||
|
||||
data, samplerate = soundfile.read(self.audio_path)
|
||||
# sf.available_formats()
|
||||
# sf.available_subtypes()
|
||||
soundfile.write(self.audio_path, data, samplerate, subtype='PCM_32')
|
||||
|
||||
audio_sample, sample_rate = torchaudio.load(self.audio_path)
|
||||
if sample_rate != self.sampling_rate:
|
||||
resample = torchaudio.transforms.Resample(orig_freq=int(sample_rate), new_freq=int(self.sampling_rate))
|
||||
audio_sample = resample(audio_sample)
|
||||
if audio_sample.shape[0] > 1:
|
||||
# Transform Stereo to Mono
|
||||
audio_sample = audio_sample.mean(dim=0, keepdim=True)
|
||||
mel_sample = self._mel_transform(audio_sample)
|
||||
with self.mel_file_path.open('wb') as mel_file:
|
||||
pickle.dump(mel_sample, mel_file, protocol=pickle.HIGHEST_PROTOCOL)
|
||||
lock_file.unlink()
|
||||
else:
|
||||
# print(f"Already existed.. Skipping {filename}")
|
||||
# mel_file = mel_file
|
||||
pass
|
||||
|
||||
# with mel_file.open(mode='rb') as f:
|
||||
# mel_sample = pickle.load(f, fix_imports=True)
|
||||
return self.mel_file_path.exists()
|
@ -1,63 +1,66 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
from ml_lib.utils.transforms import _BaseTransformation
|
||||
|
||||
class NoiseInjection(object):
|
||||
|
||||
def __init__(self, noise_factor: float, sigma=0.5, mu=0.5):
|
||||
assert noise_factor >= 0, f'max_shift_ratio has to be greater then 0, but was: {noise_factor}.'
|
||||
class NoiseInjection(_BaseTransformation):
|
||||
|
||||
def __init__(self, noise_factor: float, sigma=1, mu=0):
|
||||
super(NoiseInjection, self).__init__()
|
||||
assert noise_factor >= 0, f'noise_factor has to be greater then 0, but was: {noise_factor}.'
|
||||
self.mu = mu
|
||||
self.sigma = sigma
|
||||
self.noise_factor = noise_factor
|
||||
|
||||
def __call__(self, x: np.ndarray):
|
||||
def __call__(self, x):
|
||||
if self.noise_factor:
|
||||
noise = np.random.uniform(0, self.noise_factor, size=x.shape)
|
||||
noise = torch.normal(self.mu, self.sigma, size=x.shape, device=x.device) * self.noise_factor
|
||||
augmented_data = x + x * noise
|
||||
# Cast back to same data type
|
||||
augmented_data = augmented_data.astype(x.dtype)
|
||||
return augmented_data
|
||||
else:
|
||||
return x
|
||||
|
||||
|
||||
class LoudnessManipulator(object):
|
||||
class LoudnessManipulator(_BaseTransformation):
|
||||
|
||||
def __init__(self, max_factor: float):
|
||||
super(LoudnessManipulator, self).__init__()
|
||||
assert 1 > max_factor >= 0, f'max_shift_ratio has to be between [0,1], but was: {max_factor}.'
|
||||
|
||||
self.max_factor = max_factor
|
||||
|
||||
def __call__(self, x: np.ndarray):
|
||||
def __call__(self, x):
|
||||
if self.max_factor:
|
||||
augmented_data = x + x * (np.random.random() * self.max_factor)
|
||||
# Cast back to same data type
|
||||
augmented_data = augmented_data.astype(x.dtype)
|
||||
augmented_data = x + x * (torch.rand(1, device=x.device) * self.max_factor)
|
||||
return augmented_data
|
||||
else:
|
||||
return x
|
||||
|
||||
|
||||
class ShiftTime(object):
|
||||
class ShiftTime(_BaseTransformation):
|
||||
|
||||
valid_shifts = ['right', 'left', 'any']
|
||||
|
||||
def __init__(self, max_shift_ratio: float, shift_direction: str = 'any'):
|
||||
super(ShiftTime, self).__init__()
|
||||
assert 1 > max_shift_ratio >= 0, f'max_shift_ratio has to be between [0,1], but was: {max_shift_ratio}.'
|
||||
assert shift_direction.lower() in self.valid_shifts, f'shift_direction has to be one of: {self.valid_shifts}'
|
||||
self.max_shift_ratio = max_shift_ratio
|
||||
self.shift_direction = shift_direction.lower()
|
||||
|
||||
def __call__(self, x: np.ndarray):
|
||||
def __call__(self, x):
|
||||
if self.max_shift_ratio:
|
||||
shift = np.random.randint(max(int(self.max_shift_ratio * x.shape[-1]), 1))
|
||||
shift = torch.randint(max(int(self.max_shift_ratio * x.shape[-1]), 1), (1,)).item()
|
||||
if self.shift_direction == 'right':
|
||||
shift = -1 * shift
|
||||
elif self.shift_direction == 'any':
|
||||
direction = np.random.choice([1, -1], 1)
|
||||
# The ugly pytorch alternative
|
||||
# direction = [-1, 1][torch.multinomial(torch.as_tensor([1, 2]).float(), 1).item()]
|
||||
direction = np.asscalar(np.random.choice([1, -1], 1))
|
||||
shift = direction * shift
|
||||
augmented_data = np.roll(x, shift)
|
||||
augmented_data = torch.roll(x, shift, dims=-1)
|
||||
# Set to silence for heading/ tailing
|
||||
shift = int(shift)
|
||||
if shift > 0:
|
||||
augmented_data[:shift, :] = 0
|
||||
else:
|
||||
@ -67,12 +70,13 @@ class ShiftTime(object):
|
||||
return x
|
||||
|
||||
|
||||
class MaskAug(object):
|
||||
class MaskAug(_BaseTransformation):
|
||||
|
||||
w_idx = -1
|
||||
h_idx = -2
|
||||
|
||||
def __init__(self, duration_ratio_max=0.3, mask_with_noise=True):
|
||||
super(MaskAug, self).__init__()
|
||||
assertion = f'"duration_ratio" has to be within [0..1], but was: {duration_ratio_max}'
|
||||
if isinstance(duration_ratio_max, (tuple, list)):
|
||||
assert all([0 < max_val < 1 for max_val in duration_ratio_max]), assertion
|
||||
@ -85,15 +89,20 @@ class MaskAug(object):
|
||||
else (duration_ratio_max, duration_ratio_max)
|
||||
|
||||
def __call__(self, x):
|
||||
assert x.ndim == 3, "This function was made to wotk with two-dimensional inputs"
|
||||
for dim in (self.w_idx, self.h_idx):
|
||||
if self.duration_ratio_max[dim]:
|
||||
start = int(np.random.choice(x.shape[dim], 1))
|
||||
v_max = x.shape[dim] * self.duration_ratio_max[dim]
|
||||
size = int(np.random.randint(0, v_max, 1))
|
||||
if dim == self.w_idx and x.shape[dim] == 0:
|
||||
print(x)
|
||||
start = np.asscalar(np.random.choice(x.shape[dim], 1))
|
||||
v_max = int(x.shape[dim] * self.duration_ratio_max[dim])
|
||||
size = torch.randint(0, v_max, (1,)).item()
|
||||
end = int(min(start + size, x.shape[dim]))
|
||||
size = end - start
|
||||
if dim == self.w_idx:
|
||||
x[:, start:end] = np.random.random((x.shape[self.h_idx], size)) if self.mask_with_noise else 0
|
||||
mask = torch.randn(size=(x.shape[self.h_idx], size), device=x.device) if self.mask_with_noise else 0
|
||||
x[:, :, start:end] = mask
|
||||
else:
|
||||
x[start:end, :] = np.random.random((size, x.shape[self.w_idx])) if self.mask_with_noise else 0
|
||||
mask = torch.randn((size, x.shape[self.w_idx]), device=x.device) if self.mask_with_noise else 0
|
||||
x[:, start:end, :] = mask
|
||||
return x
|
||||
|
@ -1,29 +1,39 @@
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import pickle
|
||||
from torch.utils.data import Dataset
|
||||
|
||||
from ml_lib.modules.util import AutoPadToShape
|
||||
|
||||
|
||||
class TorchMelDataset(Dataset):
|
||||
def __init__(self, identifier, mel_path, segment_len, hop_len, label, padding=0, transform=None):
|
||||
self.padding = padding
|
||||
self.path = next(iter(Path(mel_path).glob(f'{identifier}_*')))
|
||||
self.segment_len = segment_len
|
||||
self.m, self.n = str(self.path).split('_')[-2:] # get spectrogram dimensions
|
||||
self.n = int(self.n.split('.', 1)[0]) # remove .npy
|
||||
self.m, self.n = (int(i) for i in (self.m, self.n))
|
||||
self.offsets = list(range(0, self.n - segment_len, hop_len))
|
||||
def __init__(self, mel_path, sub_segment_len, sub_segment_hop_len, label, audio_file_len,
|
||||
sampling_rate, mel_hop_len, n_mels, transform=None, auto_pad_to_shape=True):
|
||||
super(TorchMelDataset, self).__init__()
|
||||
self.sampling_rate = sampling_rate
|
||||
self.audio_file_len = audio_file_len
|
||||
self.padding = AutoPadToShape((1, n_mels , sub_segment_len)) if auto_pad_to_shape else None
|
||||
self.path = Path(mel_path)
|
||||
self.sub_segment_len = sub_segment_len
|
||||
self.mel_hop_len = mel_hop_len
|
||||
self.sub_segment_hop_len = sub_segment_hop_len
|
||||
self.n = int((self.sampling_rate / self.mel_hop_len) * self.audio_file_len + 1)
|
||||
self.offsets = list(range(0, self.n - self.sub_segment_len, self.sub_segment_hop_len))
|
||||
self.label = label
|
||||
self.transform = transform
|
||||
|
||||
def __getitem__(self, item):
|
||||
while Path(str(self.path).replace(self.path.suffix, '.lock')).exists():
|
||||
time.sleep(0.01)
|
||||
with self.path.open('rb') as mel_file:
|
||||
mel_spec = pickle.load(mel_file, fix_imports=True)
|
||||
start = self.offsets[item]
|
||||
mel_spec = np.load(str(self.path), allow_pickle=True)
|
||||
if self.padding > 0:
|
||||
mel_spec = np.pad(mel_spec, pad_width=[(0, 0), (self.padding // 2, self.padding // 2)], mode='mean')
|
||||
snippet = mel_spec[:, start: start + self.segment_len]
|
||||
snippet = mel_spec[:, : , start: start + self.sub_segment_len]
|
||||
if self.transform:
|
||||
snippet = self.transform(snippet)
|
||||
if self.padding:
|
||||
snippet = self.padding(snippet)
|
||||
return snippet, self.label
|
||||
|
||||
def __len__(self):
|
||||
|
@ -44,6 +44,9 @@ try:
|
||||
def size(self):
|
||||
return self.shape
|
||||
|
||||
def additional_scores(self, outputs):
|
||||
raise NotImplementedError
|
||||
|
||||
@property
|
||||
def dataset_class(self):
|
||||
try:
|
||||
|
@ -1,6 +1,19 @@
|
||||
from abc import ABC
|
||||
from torchvision.transforms import ToTensor as TorchVisionToTensor
|
||||
|
||||
|
||||
class _BaseTransformation(ABC):
|
||||
|
||||
def __init__(self, *args):
|
||||
pass
|
||||
|
||||
def __repr__(self):
|
||||
return f'{self.__class__.__name__}({self.__dict__})'
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class ToTensor(TorchVisionToTensor):
|
||||
|
||||
def __call__(self, pic):
|
||||
|
Loading…
x
Reference in New Issue
Block a user