ml_lib/audio_toolset/audio_to_mel_dataset.py
2020-12-17 08:02:28 +01:00

164 lines
5.9 KiB
Python

import sys
from pathlib import Path
import pickle
from abc import ABC
from torch.utils.data import Dataset
from torchvision.transforms import Compose
from ml_lib.audio_toolset.audio_io import LibrosaAudioToMel, MelToImage
from ml_lib.audio_toolset.mel_dataset import TorchMelDataset
class _AudioToMelDataset(Dataset, ABC):
@property
def audio_file_duration(self):
raise NotImplementedError
@property
def sampling_rate(self):
raise NotImplementedError
def __init__(self, audio_file_path, label, sample_segment_len=1, sample_hop_len=1, reset=False,
audio_augmentations=None, mel_augmentations=None, mel_kwargs=None, **kwargs):
self.ignored_kwargs = kwargs
self.mel_kwargs = mel_kwargs
self.reset = reset
self.audio_path = Path(audio_file_path)
mel_folder_suffix = self.audio_path.parent.parent.name
self.mel_file_path = Path(str(self.audio_path)
.replace(mel_folder_suffix, f'{mel_folder_suffix}_mel_folder')
.replace(self.audio_path.suffix, '.npy'))
self.audio_augmentations = audio_augmentations
self.dataset = TorchMelDataset(self.mel_file_path, sample_segment_len, sample_hop_len, label,
self.audio_file_duration, mel_kwargs['sample_rate'], mel_kwargs['hop_length'],
mel_kwargs['n_mels'], transform=mel_augmentations)
def _build_mel(self):
raise NotImplementedError
def __getitem__(self, item):
try:
return self.dataset[item]
except FileNotFoundError:
assert self._build_mel()
return self.dataset[item]
def __len__(self):
return len(self.dataset)
import librosa
class LibrosaAudioToMelDataset(_AudioToMelDataset):
@property
def audio_file_duration(self):
return librosa.get_duration(sr=self.mel_kwargs.get('sr', None), filename=self.audio_path)
@property
def sampling_rate(self):
return self.mel_kwargs.get('sr', None)
def __init__(self, audio_file_path, *args, **kwargs):
audio_file_path = Path(audio_file_path)
# audio_file, sampling_rate = librosa.load(self.audio_path, sr=sampling_rate)
mel_kwargs = kwargs.get('mel_kwargs', dict())
mel_kwargs.update(sr=mel_kwargs.get('sr', None) or librosa.get_samplerate(self.audio_path))
kwargs.update(mel_kwargs=mel_kwargs)
super(LibrosaAudioToMelDataset, self).__init__(audio_file_path, *args, **kwargs)
self._mel_transform = Compose([LibrosaAudioToMel(**mel_kwargs),
MelToImage()
])
def _build_mel(self):
if self.reset:
self.mel_file_path.unlink(missing_ok=True)
if not self.mel_file_path.exists():
self.mel_file_path.parent.mkdir(parents=True, exist_ok=True)
raw_sample, _ = librosa.core.load(self.audio_path, sr=self.sampling_rate)
mel_sample = self._mel_transform(raw_sample)
with self.mel_file_path.open('wb') as mel_file:
pickle.dump(mel_sample, mel_file, protocol=pickle.HIGHEST_PROTOCOL)
else:
pass
return self.mel_file_path.exists()
import torchaudio
if sys.platform =='windows':
torchaudio.set_audio_backend('soundfile')
else:
torchaudio.set_audio_backend('sox_io')
class PyTorchAudioToMelDataset(_AudioToMelDataset):
@property
def audio_file_duration(self):
info_obj = torchaudio.info(self.audio_path)
return info_obj.num_frames / info_obj.sample_rate
@property
def sampling_rate(self):
return self.mel_kwargs['sample_rate']
def __init__(self, audio_file_path, *args, **kwargs):
super(PyTorchAudioToMelDataset, self).__init__(audio_file_path, *args, **kwargs)
audio_file_path = Path(audio_file_path)
# audio_file, sampling_rate = librosa.load(self.audio_path, sr=sampling_rate)
from torchaudio.transforms import MelSpectrogram
self._mel_transform = Compose([MelSpectrogram(**self.mel_kwargs),
MelToImage()
])
def _build_mel(self):
if self.reset:
self.mel_file_path.unlink(missing_ok=True)
if not self.mel_file_path.exists():
self.mel_file_path.parent.mkdir(parents=True, exist_ok=True)
lock_file = Path(str(self.mel_file_path).replace(self.mel_file_path.suffix, '.lock'))
lock_file.touch(exist_ok=False)
try:
audio_sample, sample_rate = torchaudio.load(self.audio_path)
except RuntimeError:
import soundfile
data, samplerate = soundfile.read(self.audio_path)
# sf.available_formats()
# sf.available_subtypes()
soundfile.write(self.audio_path, data, samplerate, subtype='PCM_32')
audio_sample, sample_rate = torchaudio.load(self.audio_path)
if sample_rate != self.sampling_rate:
resample = torchaudio.transforms.Resample(orig_freq=int(sample_rate), new_freq=int(self.sampling_rate))
audio_sample = resample(audio_sample)
if audio_sample.shape[0] > 1:
# Transform Stereo to Mono
audio_sample = audio_sample.mean(dim=0, keepdim=True)
mel_sample = self._mel_transform(audio_sample)
with self.mel_file_path.open('wb') as mel_file:
pickle.dump(mel_sample, mel_file, protocol=pickle.HIGHEST_PROTOCOL)
lock_file.unlink()
else:
# print(f"Already existed.. Skipping {filename}")
# mel_file = mel_file
pass
# with mel_file.open(mode='rb') as f:
# mel_sample = pickle.load(f, fix_imports=True)
return self.mel_file_path.exists()