Model Init
This commit is contained in:
parent
5e953efd4c
commit
427a6463cb
5
.gitignore
vendored
Normal file
5
.gitignore
vendored
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
# my own stuff
|
||||||
|
|
||||||
|
/data
|
||||||
|
/.idea
|
||||||
|
/ml_lib
|
0
datasets/__init__.py
Normal file
0
datasets/__init__.py
Normal file
53
datasets/binar_masks.py
Normal file
53
datasets/binar_masks.py
Normal file
@ -0,0 +1,53 @@
|
|||||||
|
from collections import defaultdict
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import librosa as librosa
|
||||||
|
from torch.utils.data import Dataset
|
||||||
|
|
||||||
|
import variables as V
|
||||||
|
|
||||||
|
|
||||||
|
class BinaryMasks(Dataset):
|
||||||
|
_to_label = defaultdict(-1)
|
||||||
|
_to_label['clear'] = V.CLEAR
|
||||||
|
_to_label['mask'] = V.MASK
|
||||||
|
|
||||||
|
def __init__(self, data_root, setting):
|
||||||
|
assert isinstance(setting, str)
|
||||||
|
assert setting in ['test', 'devel', 'train']
|
||||||
|
super(BinaryMasks, self).__init__()
|
||||||
|
|
||||||
|
self.data_root = Path(data_root)
|
||||||
|
self.setting = setting
|
||||||
|
self._labels = self._build_labels()
|
||||||
|
self._wav_folder = self.data_root / 'wav'
|
||||||
|
self._files = list(sorted(self._labels.keys()))
|
||||||
|
|
||||||
|
def _build_labels(self):
|
||||||
|
with open(Path(self.data_root) / 'lab' / 'labels.csv', mode='r') as f:
|
||||||
|
# Exclude the header
|
||||||
|
_ = next(f)
|
||||||
|
labeldict = dict()
|
||||||
|
for row in f:
|
||||||
|
if self.setting not in row:
|
||||||
|
continue
|
||||||
|
filename, label = row.split(',')
|
||||||
|
labeldict[filename] = self._to_label[label.lower()]
|
||||||
|
return labeldict
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self._labels)
|
||||||
|
|
||||||
|
def __getitem__(self, item):
|
||||||
|
key = self._files[item]
|
||||||
|
sample = librosa.core.load(self._wav_folder / self._files[key])
|
||||||
|
label = self._labels[key]
|
||||||
|
return sample, label
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
141
main.py
Normal file
141
main.py
Normal file
@ -0,0 +1,141 @@
|
|||||||
|
# Imports
|
||||||
|
# =============================================================================
|
||||||
|
import os
|
||||||
|
from distutils.util import strtobool
|
||||||
|
from pathlib import Path
|
||||||
|
from argparse import ArgumentParser, Namespace
|
||||||
|
|
||||||
|
import warnings
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from pytorch_lightning import Trainer
|
||||||
|
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
|
from ml_lib.modules.utils import LightningBaseModule
|
||||||
|
from ml_lib.utils.config import Config
|
||||||
|
from ml_lib.utils.logging import Logger
|
||||||
|
from ml_lib.utils.model_io import SavedLightningModels
|
||||||
|
|
||||||
|
warnings.filterwarnings('ignore', category=FutureWarning)
|
||||||
|
warnings.filterwarnings('ignore', category=UserWarning)
|
||||||
|
|
||||||
|
_ROOT = Path(__file__).parent
|
||||||
|
|
||||||
|
# Parameter Configuration
|
||||||
|
# =============================================================================
|
||||||
|
# Argument Parser
|
||||||
|
main_arg_parser = ArgumentParser(description="parser for fast-neural-style")
|
||||||
|
|
||||||
|
# Main Parameters
|
||||||
|
main_arg_parser.add_argument("--main_debug", type=strtobool, default=False, help="")
|
||||||
|
main_arg_parser.add_argument("--main_eval", type=strtobool, default=True, help="")
|
||||||
|
main_arg_parser.add_argument("--main_seed", type=int, default=69, help="")
|
||||||
|
|
||||||
|
# Data Parameters
|
||||||
|
main_arg_parser.add_argument("--data_worker", type=int, default=10, help="")
|
||||||
|
main_arg_parser.add_argument("--data_dataset_length", type=int, default=10000, help="")
|
||||||
|
main_arg_parser.add_argument("--data_root", type=str, default='data', help="")
|
||||||
|
main_arg_parser.add_argument("--data_normalized", type=strtobool, default=True, help="")
|
||||||
|
main_arg_parser.add_argument("--data_use_preprocessed", type=strtobool, default=True, help="")
|
||||||
|
|
||||||
|
# Transformation Parameters
|
||||||
|
main_arg_parser.add_argument("--transformations_to_tensor", type=strtobool, default=False, help="")
|
||||||
|
|
||||||
|
# Training Parameters
|
||||||
|
main_arg_parser.add_argument("--train_outpath", type=str, default="output", help="")
|
||||||
|
main_arg_parser.add_argument("--train_version", type=strtobool, required=False, help="")
|
||||||
|
main_arg_parser.add_argument("--train_epochs", type=int, default=500, help="")
|
||||||
|
main_arg_parser.add_argument("--train_batch_size", type=int, default=200, help="")
|
||||||
|
main_arg_parser.add_argument("--train_lr", type=float, default=1e-3, help="")
|
||||||
|
main_arg_parser.add_argument("--train_num_sanity_val_steps", type=int, default=0, help="")
|
||||||
|
|
||||||
|
# Model Parameters
|
||||||
|
main_arg_parser.add_argument("--model_type", type=str, default="BinaryClassifier", help="")
|
||||||
|
main_arg_parser.add_argument("--model_activation", type=str, default="leaky_relu", help="")
|
||||||
|
main_arg_parser.add_argument("--model_filters", type=str, default="[16, 32, 64]", help="")
|
||||||
|
main_arg_parser.add_argument("--model_classes", type=int, default=2, help="")
|
||||||
|
main_arg_parser.add_argument("--model_lat_dim", type=int, default=16, help="")
|
||||||
|
main_arg_parser.add_argument("--model_use_bias", type=strtobool, default=True, help="")
|
||||||
|
main_arg_parser.add_argument("--model_use_norm", type=strtobool, default=False, help="")
|
||||||
|
main_arg_parser.add_argument("--model_dropout", type=float, default=0.00, help="")
|
||||||
|
|
||||||
|
# Project Parameters
|
||||||
|
main_arg_parser.add_argument("--project_name", type=str, default=_ROOT.parent.name, help="")
|
||||||
|
main_arg_parser.add_argument("--project_owner", type=str, default='si11ium', help="")
|
||||||
|
main_arg_parser.add_argument("--project_neptune_key", type=str, default=os.getenv('NEPTUNE_KEY'), help="")
|
||||||
|
|
||||||
|
# Parse it
|
||||||
|
args: Namespace = main_arg_parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def run_lightning_loop(config_obj):
|
||||||
|
|
||||||
|
# Logging
|
||||||
|
# ================================================================================
|
||||||
|
# Logger
|
||||||
|
with Logger(config_obj) as logger:
|
||||||
|
# Callbacks
|
||||||
|
# =============================================================================
|
||||||
|
# Checkpoint Saving
|
||||||
|
checkpoint_callback = ModelCheckpoint(
|
||||||
|
filepath=str(logger.log_dir / 'ckpt_weights'),
|
||||||
|
verbose=True, save_top_k=0,
|
||||||
|
)
|
||||||
|
|
||||||
|
# =============================================================================
|
||||||
|
# Early Stopping
|
||||||
|
# TODO: For This to work, set a validation step and End Eval and Score
|
||||||
|
early_stopping_callback = EarlyStopping(
|
||||||
|
monitor='val_loss',
|
||||||
|
min_delta=0.0,
|
||||||
|
patience=0,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Dataset and Dataloaders
|
||||||
|
# =============================================================================
|
||||||
|
# Train Dataset
|
||||||
|
from datasets.binar_masks import BinaryMasks
|
||||||
|
dataset = BinaryMasks(config_obj.data.root, setting='train')
|
||||||
|
# Train Dataloader
|
||||||
|
dataloader = DataLoader(dataset)
|
||||||
|
|
||||||
|
# Model
|
||||||
|
# =============================================================================
|
||||||
|
# Build and Init its Weights
|
||||||
|
model: LightningBaseModule = config_obj.build_and_init_model(weight_init_function=torch.nn.init.xavier_normal_)
|
||||||
|
|
||||||
|
# Trainer
|
||||||
|
# =============================================================================
|
||||||
|
trainer = Trainer(max_epochs=config_obj.train.epochs,
|
||||||
|
show_progress_bar=True,
|
||||||
|
weights_save_path=logger.log_dir,
|
||||||
|
gpus=[0] if torch.cuda.is_available() else None,
|
||||||
|
check_val_every_n_epoch=10,
|
||||||
|
# num_sanity_val_steps=config_obj.train.num_sanity_val_steps,
|
||||||
|
# row_log_interval=(model.n_train_batches * 0.1), # TODO: Better Value / Setting
|
||||||
|
# log_save_interval=(model.n_train_batches * 0.2), # TODO: Better Value / Setting
|
||||||
|
checkpoint_callback=checkpoint_callback,
|
||||||
|
logger=logger,
|
||||||
|
fast_dev_run=config_obj.main.debug,
|
||||||
|
early_stop_callback=None
|
||||||
|
)
|
||||||
|
|
||||||
|
# Train It
|
||||||
|
trainer.fit(model)
|
||||||
|
|
||||||
|
# Save the last state & all parameters
|
||||||
|
trainer.save_checkpoint(logger.log_dir / 'weights.ckpt')
|
||||||
|
model.save_to_disk(logger.log_dir)
|
||||||
|
|
||||||
|
# Evaluate It
|
||||||
|
if config_obj.main.eval:
|
||||||
|
trainer.test()
|
||||||
|
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
|
||||||
|
config = Config.read_namespace(args)
|
||||||
|
trained_model = run_lightning_loop(config)
|
0
models/__init__.py
Normal file
0
models/__init__.py
Normal file
47
models/binary_classifier.py
Normal file
47
models/binary_classifier.py
Normal file
@ -0,0 +1,47 @@
|
|||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
from torch.optim import Adam
|
||||||
|
|
||||||
|
from ml_lib.modules.blocks import ConvModule
|
||||||
|
from ml_lib.modules.utils import LightningBaseModule
|
||||||
|
|
||||||
|
|
||||||
|
class BinaryClassifier(LightningBaseModule):
|
||||||
|
@classmethod
|
||||||
|
def name(cls):
|
||||||
|
return cls.__name__
|
||||||
|
|
||||||
|
def configure_optimizers(self):
|
||||||
|
return Adam(lr=self.hparams.train.lr)
|
||||||
|
|
||||||
|
def training_step(self, batch_xy, batch_nb, *args, **kwargs):
|
||||||
|
batch_x, batch_y = batch_xy
|
||||||
|
y = self(batch_y)
|
||||||
|
loss = self.criterion(y, batch_y)
|
||||||
|
return dict(loss=loss)
|
||||||
|
|
||||||
|
def validation_step(self, batch_xy, **kwargs):
|
||||||
|
batch_x, batch_y = batch_xy
|
||||||
|
y = self(batch_y)
|
||||||
|
val_loss = self.criterion(y, batch_y)
|
||||||
|
return dict(val_loss=val_loss)
|
||||||
|
|
||||||
|
def validation_epoch_end(self, outputs):
|
||||||
|
over_all_val_loss = torch.mean(torch.stack([output['val_loss'] for output in outputs]))
|
||||||
|
|
||||||
|
def __init__(self, hparams):
|
||||||
|
super(BinaryClassifier, self).__init__(hparams)
|
||||||
|
self.criterion = nn.BCELoss()
|
||||||
|
|
||||||
|
# Additional parameters
|
||||||
|
self.in_shape = ()
|
||||||
|
|
||||||
|
# Model Modules
|
||||||
|
self.conv_1 = ConvModule(self.in_shape, 32, 5, )
|
||||||
|
self.conv_2 = ConvModule(64)
|
||||||
|
self.conv_3 = ConvModule(128)
|
||||||
|
|
||||||
|
def forward(self, batch, **kwargs):
|
||||||
|
return batch
|
||||||
|
|
||||||
|
|
3
variables.py
Normal file
3
variables.py
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
# Labels
|
||||||
|
CLEAR = 0
|
||||||
|
MASK = 1
|
Loading…
x
Reference in New Issue
Block a user