2020-04-15 15:57:49 +02:00

142 lines
6.0 KiB
Python

# Imports
# =============================================================================
import os
from distutils.util import strtobool
from pathlib import Path
from argparse import ArgumentParser, Namespace
import warnings
import torch
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
from torch.utils.data import DataLoader
from ml_lib.modules.utils import LightningBaseModule
from ml_lib.utils.config import Config
from ml_lib.utils.logging import Logger
from ml_lib.utils.model_io import SavedLightningModels
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=UserWarning)
_ROOT = Path(__file__).parent
# Parameter Configuration
# =============================================================================
# Argument Parser
main_arg_parser = ArgumentParser(description="parser for fast-neural-style")
# Main Parameters
main_arg_parser.add_argument("--main_debug", type=strtobool, default=False, help="")
main_arg_parser.add_argument("--main_eval", type=strtobool, default=True, help="")
main_arg_parser.add_argument("--main_seed", type=int, default=69, help="")
# Data Parameters
main_arg_parser.add_argument("--data_worker", type=int, default=10, help="")
main_arg_parser.add_argument("--data_dataset_length", type=int, default=10000, help="")
main_arg_parser.add_argument("--data_root", type=str, default='data', help="")
main_arg_parser.add_argument("--data_normalized", type=strtobool, default=True, help="")
main_arg_parser.add_argument("--data_use_preprocessed", type=strtobool, default=True, help="")
# Transformation Parameters
main_arg_parser.add_argument("--transformations_to_tensor", type=strtobool, default=False, help="")
# Training Parameters
main_arg_parser.add_argument("--train_outpath", type=str, default="output", help="")
main_arg_parser.add_argument("--train_version", type=strtobool, required=False, help="")
main_arg_parser.add_argument("--train_epochs", type=int, default=500, help="")
main_arg_parser.add_argument("--train_batch_size", type=int, default=200, help="")
main_arg_parser.add_argument("--train_lr", type=float, default=1e-3, help="")
main_arg_parser.add_argument("--train_num_sanity_val_steps", type=int, default=0, help="")
# Model Parameters
main_arg_parser.add_argument("--model_type", type=str, default="BinaryClassifier", help="")
main_arg_parser.add_argument("--model_activation", type=str, default="leaky_relu", help="")
main_arg_parser.add_argument("--model_filters", type=str, default="[16, 32, 64]", help="")
main_arg_parser.add_argument("--model_classes", type=int, default=2, help="")
main_arg_parser.add_argument("--model_lat_dim", type=int, default=16, help="")
main_arg_parser.add_argument("--model_use_bias", type=strtobool, default=True, help="")
main_arg_parser.add_argument("--model_use_norm", type=strtobool, default=False, help="")
main_arg_parser.add_argument("--model_dropout", type=float, default=0.00, help="")
# Project Parameters
main_arg_parser.add_argument("--project_name", type=str, default=_ROOT.parent.name, help="")
main_arg_parser.add_argument("--project_owner", type=str, default='si11ium', help="")
main_arg_parser.add_argument("--project_neptune_key", type=str, default=os.getenv('NEPTUNE_KEY'), help="")
# Parse it
args: Namespace = main_arg_parser.parse_args()
def run_lightning_loop(config_obj):
# Logging
# ================================================================================
# Logger
with Logger(config_obj) as logger:
# Callbacks
# =============================================================================
# Checkpoint Saving
checkpoint_callback = ModelCheckpoint(
filepath=str(logger.log_dir / 'ckpt_weights'),
verbose=True, save_top_k=0,
)
# =============================================================================
# Early Stopping
# TODO: For This to work, set a validation step and End Eval and Score
early_stopping_callback = EarlyStopping(
monitor='val_loss',
min_delta=0.0,
patience=0,
)
# Dataset and Dataloaders
# =============================================================================
# Train Dataset
from datasets.binar_masks import BinaryMasks
dataset = BinaryMasks(config_obj.data.root, setting='train')
# Train Dataloader
dataloader = DataLoader(dataset)
# Model
# =============================================================================
# Build and Init its Weights
model: LightningBaseModule = config_obj.build_and_init_model(weight_init_function=torch.nn.init.xavier_normal_)
# Trainer
# =============================================================================
trainer = Trainer(max_epochs=config_obj.train.epochs,
show_progress_bar=True,
weights_save_path=logger.log_dir,
gpus=[0] if torch.cuda.is_available() else None,
check_val_every_n_epoch=10,
# num_sanity_val_steps=config_obj.train.num_sanity_val_steps,
# row_log_interval=(model.n_train_batches * 0.1), # TODO: Better Value / Setting
# log_save_interval=(model.n_train_batches * 0.2), # TODO: Better Value / Setting
checkpoint_callback=checkpoint_callback,
logger=logger,
fast_dev_run=config_obj.main.debug,
early_stop_callback=None
)
# Train It
trainer.fit(model)
# Save the last state & all parameters
trainer.save_checkpoint(logger.log_dir / 'weights.ckpt')
model.save_to_disk(logger.log_dir)
# Evaluate It
if config_obj.main.eval:
trainer.test()
return model
if __name__ == "__main__":
config = Config.read_namespace(args)
trained_model = run_lightning_loop(config)