48 lines
1.3 KiB
Python
48 lines
1.3 KiB
Python
import torch
|
|
from torch import nn
|
|
from torch.optim import Adam
|
|
|
|
from ml_lib.modules.blocks import ConvModule
|
|
from ml_lib.modules.utils import LightningBaseModule
|
|
|
|
|
|
class BinaryClassifier(LightningBaseModule):
|
|
@classmethod
|
|
def name(cls):
|
|
return cls.__name__
|
|
|
|
def configure_optimizers(self):
|
|
return Adam(lr=self.hparams.train.lr)
|
|
|
|
def training_step(self, batch_xy, batch_nb, *args, **kwargs):
|
|
batch_x, batch_y = batch_xy
|
|
y = self(batch_y)
|
|
loss = self.criterion(y, batch_y)
|
|
return dict(loss=loss)
|
|
|
|
def validation_step(self, batch_xy, **kwargs):
|
|
batch_x, batch_y = batch_xy
|
|
y = self(batch_y)
|
|
val_loss = self.criterion(y, batch_y)
|
|
return dict(val_loss=val_loss)
|
|
|
|
def validation_epoch_end(self, outputs):
|
|
over_all_val_loss = torch.mean(torch.stack([output['val_loss'] for output in outputs]))
|
|
|
|
def __init__(self, hparams):
|
|
super(BinaryClassifier, self).__init__(hparams)
|
|
self.criterion = nn.BCELoss()
|
|
|
|
# Additional parameters
|
|
self.in_shape = ()
|
|
|
|
# Model Modules
|
|
self.conv_1 = ConvModule(self.in_shape, 32, 5, )
|
|
self.conv_2 = ConvModule(64)
|
|
self.conv_3 = ConvModule(128)
|
|
|
|
def forward(self, batch, **kwargs):
|
|
return batch
|
|
|
|
|