mirror of
				https://github.com/illiumst/marl-factory-grid.git
				synced 2025-10-31 12:37:27 +01:00 
			
		
		
		
	add working dqn and vdn
This commit is contained in:
		| @@ -56,20 +56,25 @@ class BaseDQN(nn.Module): | ||||
|     def __init__(self): | ||||
|         super(BaseDQN, self).__init__() | ||||
|         self.net = nn.Sequential( | ||||
|             nn.Flatten(), | ||||
|             nn.Linear(3*5*5, 64), | ||||
|             nn.ReLU(), | ||||
|             nn.ELU(), | ||||
|             nn.Linear(64,  64), | ||||
|             nn.ReLU(), | ||||
|             nn.Linear(64, 9) | ||||
|             nn.ELU() | ||||
|         ) | ||||
|         self.value_head         =  nn.Linear(64, 1) | ||||
|         self.advantage_head     =  nn.Linear(64, 9) | ||||
|  | ||||
|     def act(self, x) -> np.ndarray: | ||||
|         with torch.no_grad(): | ||||
|             action = self.net(x.view(x.shape[0], -1)).max(-1)[1].numpy() | ||||
|             action = self.forward(x).max(-1)[1].numpy() | ||||
|         return action | ||||
|  | ||||
|     def forward(self, x): | ||||
|         return self.net(x.view(x.shape[0], -1)) | ||||
|         features = self.net(x) | ||||
|         advantages = self.advantage_head(features) | ||||
|         values = self.value_head(features) | ||||
|         return values + (advantages - advantages.mean()) | ||||
|  | ||||
|     def random_action(self): | ||||
|         return random.randrange(0, 5) | ||||
| @@ -97,9 +102,10 @@ class BaseQlearner: | ||||
|         self.reg_weight = reg_weight | ||||
|         self.n_agents = n_agents | ||||
|         self.device = 'cpu' | ||||
|         self.optimizer = torch.optim.Adam(self.q_net.parameters(), lr=self.lr) | ||||
|         self.running_reward = deque(maxlen=10) | ||||
|         self.running_loss = deque(maxlen=10) | ||||
|         self.optimizer = torch.optim.AdamW(self.q_net.parameters(), lr=self.lr) | ||||
|         self.running_reward = deque(maxlen=5) | ||||
|         self.running_loss = deque(maxlen=5) | ||||
|         self._n_updates = 0 | ||||
|  | ||||
|     def to(self, device): | ||||
|         self.device = device | ||||
| @@ -135,8 +141,7 @@ class BaseQlearner: | ||||
|  | ||||
|                 next_obs, reward, done, info = self.env.step(action if not len(action) == 1 else action[0]) | ||||
|  | ||||
|                 experience = Experience(observation=obs.copy(), next_observation=next_obs.copy(), | ||||
|                                         action=action, reward=reward, done=done)  # do we really need to copy? | ||||
|                 experience = Experience(observation=obs, next_observation=next_obs, action=action, reward=reward, done=done)  # do we really need to copy? | ||||
|                 self.buffer.add(experience) | ||||
|                 # end of step routine | ||||
|                 obs = next_obs | ||||
| @@ -146,6 +151,7 @@ class BaseQlearner: | ||||
|  | ||||
|                 if step % self.train_every_n_steps == 0: | ||||
|                     self.train() | ||||
|                     self._n_updates += 1 | ||||
|                 if step % self.target_update == 0: | ||||
|                     print('UPDATE') | ||||
|                     polyak_update(self.q_net.parameters(), self.target_q_net.parameters(), 1) | ||||
| @@ -154,12 +160,12 @@ class BaseQlearner: | ||||
|             self.running_reward.append(total_reward) | ||||
|             if step % 10 == 0: | ||||
|                 print(f'Step: {step} ({(step/n_steps)*100:.2f}%)\tRunning reward: {sum(list(self.running_reward))/len(self.running_reward):.2f}\t' | ||||
|                       f' eps: {self.eps:.4f}\tRunning loss: {sum(list(self.running_loss))/len(self.running_loss):.4f}') | ||||
|                       f' eps: {self.eps:.4f}\tRunning loss: {sum(list(self.running_loss))/len(self.running_loss):.4f}\tUpdates:{self._n_updates}') | ||||
|  | ||||
|     def _training_routine(self, obs, next_obs, action): | ||||
|         current_q_values = self.q_net(obs) | ||||
|         current_q_values = torch.gather(current_q_values, dim=1, index=action) | ||||
|         next_q_values_raw = self.target_q_net(next_obs).max(dim=1)[0].reshape(-1, 1).detach() | ||||
|         current_q_values = torch.gather(current_q_values, dim=-1, index=action) | ||||
|         next_q_values_raw = self.target_q_net(next_obs).max(dim=-1)[0].reshape(-1, 1).detach() | ||||
|         return current_q_values, next_q_values_raw | ||||
|  | ||||
|     def train(self): | ||||
| @@ -181,7 +187,6 @@ class BaseQlearner: | ||||
|                     target_q_raw += next_q_values_raw | ||||
|             target_q = experience.reward  + (1 - experience.done) * self.gamma * target_q_raw | ||||
|             loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - target_q, 2)) | ||||
|             #print(pred_q.shape, target_q.shape) | ||||
|  | ||||
|             # log loss | ||||
|             self.running_loss.append(loss.item()) | ||||
| @@ -198,7 +203,6 @@ if __name__ == '__main__': | ||||
|     from algorithms.reg_dqn import RegDQN | ||||
|     from stable_baselines3.common.vec_env import DummyVecEnv | ||||
|  | ||||
|  | ||||
|     N_AGENTS = 1 | ||||
|  | ||||
|     dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30, | ||||
| @@ -210,14 +214,13 @@ if __name__ == '__main__': | ||||
|     #env = DummyVecEnv([lambda: env]) | ||||
|     from stable_baselines3.dqn import DQN | ||||
|  | ||||
|     #dqn = RegDQN('MlpPolicy', env, verbose=True, buffer_size = 50000, learning_starts = 64, batch_size = 64, | ||||
|     #             target_update_interval = 5000, exploration_fraction = 0.25, exploration_final_eps = 0.025, | ||||
|     #             train_freq=4, gradient_steps=1, reg_weight=0.05) | ||||
|     #dqn = RegDQN('MlpPolicy', env, verbose=True, buffer_size = 40000, learning_starts = 0, batch_size = 64,learning_rate=0.0008, | ||||
|     #             target_update_interval = 3500, exploration_fraction = 0.25, exploration_final_eps = 0.05, | ||||
|     #             train_freq=4, gradient_steps=1, reg_weight=0.05, seed=69) | ||||
|     #dqn.learn(100000) | ||||
|  | ||||
|  | ||||
|     print(env.observation_space, env.action_space) | ||||
|     dqn, target_dqn = BaseDQN(), BaseDQN() | ||||
|     learner = BaseQlearner(dqn, target_dqn, env, BaseBuffer(5000), target_update=5000, lr=0.0001, gamma=0.99, n_agents=N_AGENTS, | ||||
|     learner = BaseQlearner(dqn, target_dqn, env, BaseBuffer(40000), target_update=3500, lr=0.0008, gamma=0.99, n_agents=N_AGENTS, | ||||
|                            train_every_n_steps=4, eps_end=0.05, n_grad_steps=1, reg_weight=0.05, exploration_fraction=0.25, batch_size=64) | ||||
|     learner.learn(100000) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 romue
					romue