diff --git a/algorithms/_base.py b/algorithms/_base.py index 1829937..8ca0aef 100644 --- a/algorithms/_base.py +++ b/algorithms/_base.py @@ -56,20 +56,25 @@ class BaseDQN(nn.Module): def __init__(self): super(BaseDQN, self).__init__() self.net = nn.Sequential( + nn.Flatten(), nn.Linear(3*5*5, 64), - nn.ReLU(), + nn.ELU(), nn.Linear(64, 64), - nn.ReLU(), - nn.Linear(64, 9) + nn.ELU() ) + self.value_head = nn.Linear(64, 1) + self.advantage_head = nn.Linear(64, 9) def act(self, x) -> np.ndarray: with torch.no_grad(): - action = self.net(x.view(x.shape[0], -1)).max(-1)[1].numpy() + action = self.forward(x).max(-1)[1].numpy() return action def forward(self, x): - return self.net(x.view(x.shape[0], -1)) + features = self.net(x) + advantages = self.advantage_head(features) + values = self.value_head(features) + return values + (advantages - advantages.mean()) def random_action(self): return random.randrange(0, 5) @@ -97,9 +102,10 @@ class BaseQlearner: self.reg_weight = reg_weight self.n_agents = n_agents self.device = 'cpu' - self.optimizer = torch.optim.Adam(self.q_net.parameters(), lr=self.lr) - self.running_reward = deque(maxlen=10) - self.running_loss = deque(maxlen=10) + self.optimizer = torch.optim.AdamW(self.q_net.parameters(), lr=self.lr) + self.running_reward = deque(maxlen=5) + self.running_loss = deque(maxlen=5) + self._n_updates = 0 def to(self, device): self.device = device @@ -135,8 +141,7 @@ class BaseQlearner: next_obs, reward, done, info = self.env.step(action if not len(action) == 1 else action[0]) - experience = Experience(observation=obs.copy(), next_observation=next_obs.copy(), - action=action, reward=reward, done=done) # do we really need to copy? + experience = Experience(observation=obs, next_observation=next_obs, action=action, reward=reward, done=done) # do we really need to copy? self.buffer.add(experience) # end of step routine obs = next_obs @@ -146,6 +151,7 @@ class BaseQlearner: if step % self.train_every_n_steps == 0: self.train() + self._n_updates += 1 if step % self.target_update == 0: print('UPDATE') polyak_update(self.q_net.parameters(), self.target_q_net.parameters(), 1) @@ -154,12 +160,12 @@ class BaseQlearner: self.running_reward.append(total_reward) if step % 10 == 0: print(f'Step: {step} ({(step/n_steps)*100:.2f}%)\tRunning reward: {sum(list(self.running_reward))/len(self.running_reward):.2f}\t' - f' eps: {self.eps:.4f}\tRunning loss: {sum(list(self.running_loss))/len(self.running_loss):.4f}') + f' eps: {self.eps:.4f}\tRunning loss: {sum(list(self.running_loss))/len(self.running_loss):.4f}\tUpdates:{self._n_updates}') def _training_routine(self, obs, next_obs, action): current_q_values = self.q_net(obs) - current_q_values = torch.gather(current_q_values, dim=1, index=action) - next_q_values_raw = self.target_q_net(next_obs).max(dim=1)[0].reshape(-1, 1).detach() + current_q_values = torch.gather(current_q_values, dim=-1, index=action) + next_q_values_raw = self.target_q_net(next_obs).max(dim=-1)[0].reshape(-1, 1).detach() return current_q_values, next_q_values_raw def train(self): @@ -181,7 +187,6 @@ class BaseQlearner: target_q_raw += next_q_values_raw target_q = experience.reward + (1 - experience.done) * self.gamma * target_q_raw loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - target_q, 2)) - #print(pred_q.shape, target_q.shape) # log loss self.running_loss.append(loss.item()) @@ -198,7 +203,6 @@ if __name__ == '__main__': from algorithms.reg_dqn import RegDQN from stable_baselines3.common.vec_env import DummyVecEnv - N_AGENTS = 1 dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30, @@ -210,14 +214,13 @@ if __name__ == '__main__': #env = DummyVecEnv([lambda: env]) from stable_baselines3.dqn import DQN - #dqn = RegDQN('MlpPolicy', env, verbose=True, buffer_size = 50000, learning_starts = 64, batch_size = 64, - # target_update_interval = 5000, exploration_fraction = 0.25, exploration_final_eps = 0.025, - # train_freq=4, gradient_steps=1, reg_weight=0.05) + #dqn = RegDQN('MlpPolicy', env, verbose=True, buffer_size = 40000, learning_starts = 0, batch_size = 64,learning_rate=0.0008, + # target_update_interval = 3500, exploration_fraction = 0.25, exploration_final_eps = 0.05, + # train_freq=4, gradient_steps=1, reg_weight=0.05, seed=69) #dqn.learn(100000) - print(env.observation_space, env.action_space) dqn, target_dqn = BaseDQN(), BaseDQN() - learner = BaseQlearner(dqn, target_dqn, env, BaseBuffer(5000), target_update=5000, lr=0.0001, gamma=0.99, n_agents=N_AGENTS, + learner = BaseQlearner(dqn, target_dqn, env, BaseBuffer(40000), target_update=3500, lr=0.0008, gamma=0.99, n_agents=N_AGENTS, train_every_n_steps=4, eps_end=0.05, n_grad_steps=1, reg_weight=0.05, exploration_fraction=0.25, batch_size=64) learner.learn(100000)