mirror of
https://github.com/illiumst/marl-factory-grid.git
synced 2025-05-23 07:16:44 +02:00
added own dqn
This commit is contained in:
parent
813c9d2c91
commit
84ebd495a6
@ -56,11 +56,11 @@ class BaseDQN(nn.Module):
|
||||
def __init__(self):
|
||||
super(BaseDQN, self).__init__()
|
||||
self.net = nn.Sequential(
|
||||
nn.Linear(3*5*5, 128),
|
||||
nn.Linear(3*5*5, 64),
|
||||
nn.ReLU(),
|
||||
nn.Linear(128, 128),
|
||||
nn.Linear(64, 64),
|
||||
nn.ReLU(),
|
||||
nn.Linear(128, 9)
|
||||
nn.Linear(64, 9)
|
||||
)
|
||||
|
||||
def act(self, x) -> np.ndarray:
|
||||
@ -81,8 +81,7 @@ class BaseQlearner:
|
||||
exploration_fraction=0.2, batch_size=64, lr=1e-4, reg_weight=0.0):
|
||||
self.q_net = q_net
|
||||
self.target_q_net = target_q_net
|
||||
#self.q_net.apply(self.weights_init)
|
||||
polyak_update(self.q_net.parameters(), self.target_q_net.parameters(), 1)
|
||||
self.q_net.apply(self.weights_init)
|
||||
self.target_q_net.eval()
|
||||
self.env = env
|
||||
self.buffer = buffer
|
||||
@ -99,8 +98,8 @@ class BaseQlearner:
|
||||
self.n_agents = n_agents
|
||||
self.device = 'cpu'
|
||||
self.optimizer = torch.optim.Adam(self.q_net.parameters(), lr=self.lr)
|
||||
self.running_reward = deque(maxlen=30)
|
||||
self.running_loss = deque(maxlen=30)
|
||||
self.running_reward = deque(maxlen=10)
|
||||
self.running_loss = deque(maxlen=10)
|
||||
|
||||
def to(self, device):
|
||||
self.device = device
|
||||
@ -149,7 +148,7 @@ class BaseQlearner:
|
||||
self.train()
|
||||
if step % self.target_update == 0:
|
||||
print('UPDATE')
|
||||
polyak_update(self.q_net.parameters(), self.target_q_net.parameters(), 1.0)
|
||||
polyak_update(self.q_net.parameters(), self.target_q_net.parameters(), 1)
|
||||
|
||||
|
||||
self.running_reward.append(total_reward)
|
||||
@ -160,7 +159,7 @@ class BaseQlearner:
|
||||
def _training_routine(self, obs, next_obs, action):
|
||||
current_q_values = self.q_net(obs)
|
||||
current_q_values = torch.gather(current_q_values, dim=1, index=action)
|
||||
next_q_values_raw = self.target_q_net(next_obs).max(dim=-1)[0].reshape(-1, 1).detach()
|
||||
next_q_values_raw = self.target_q_net(next_obs).max(dim=1)[0].reshape(-1, 1).detach()
|
||||
return current_q_values, next_q_values_raw
|
||||
|
||||
def train(self):
|
||||
@ -180,10 +179,9 @@ class BaseQlearner:
|
||||
)
|
||||
pred_q += q_values
|
||||
target_q_raw += next_q_values_raw
|
||||
|
||||
target_q = experience.reward + (1 - experience.done) * self.gamma * target_q_raw
|
||||
target_q = experience.reward + (1 - experience.done) * self.gamma * target_q_raw
|
||||
loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - target_q, 2))
|
||||
#print(target_q)
|
||||
#print(pred_q.shape, target_q.shape)
|
||||
|
||||
# log loss
|
||||
self.running_loss.append(loss.item())
|
||||
@ -208,8 +206,8 @@ if __name__ == '__main__':
|
||||
move_props = MovementProperties(allow_diagonal_movement=True,
|
||||
allow_square_movement=True,
|
||||
allow_no_op=False)
|
||||
env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2, max_steps=400, omit_agent_slice_in_obs=False)
|
||||
# env = DummyVecEnv([lambda: env])
|
||||
env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2, max_steps=400, omit_agent_slice_in_obs=False, combin_agent_slices_in_obs=True)
|
||||
#env = DummyVecEnv([lambda: env])
|
||||
from stable_baselines3.dqn import DQN
|
||||
|
||||
#dqn = RegDQN('MlpPolicy', env, verbose=True, buffer_size = 50000, learning_starts = 64, batch_size = 64,
|
||||
@ -220,6 +218,6 @@ if __name__ == '__main__':
|
||||
|
||||
print(env.observation_space, env.action_space)
|
||||
dqn, target_dqn = BaseDQN(), BaseDQN()
|
||||
learner = BaseQlearner(dqn, target_dqn, env, BaseBuffer(50000), target_update=10000, lr=0.0001, gamma=0.99, n_agents=N_AGENTS,
|
||||
learner = BaseQlearner(dqn, target_dqn, env, BaseBuffer(5000), target_update=5000, lr=0.0001, gamma=0.99, n_agents=N_AGENTS,
|
||||
train_every_n_steps=4, eps_end=0.05, n_grad_steps=1, reg_weight=0.05, exploration_fraction=0.25, batch_size=64)
|
||||
learner.learn(100000)
|
||||
|
Loading…
x
Reference in New Issue
Block a user