diff --git a/algorithms/_base.py b/algorithms/_base.py index dd3e458..1829937 100644 --- a/algorithms/_base.py +++ b/algorithms/_base.py @@ -56,11 +56,11 @@ class BaseDQN(nn.Module): def __init__(self): super(BaseDQN, self).__init__() self.net = nn.Sequential( - nn.Linear(3*5*5, 128), + nn.Linear(3*5*5, 64), nn.ReLU(), - nn.Linear(128, 128), + nn.Linear(64, 64), nn.ReLU(), - nn.Linear(128, 9) + nn.Linear(64, 9) ) def act(self, x) -> np.ndarray: @@ -81,8 +81,7 @@ class BaseQlearner: exploration_fraction=0.2, batch_size=64, lr=1e-4, reg_weight=0.0): self.q_net = q_net self.target_q_net = target_q_net - #self.q_net.apply(self.weights_init) - polyak_update(self.q_net.parameters(), self.target_q_net.parameters(), 1) + self.q_net.apply(self.weights_init) self.target_q_net.eval() self.env = env self.buffer = buffer @@ -99,8 +98,8 @@ class BaseQlearner: self.n_agents = n_agents self.device = 'cpu' self.optimizer = torch.optim.Adam(self.q_net.parameters(), lr=self.lr) - self.running_reward = deque(maxlen=30) - self.running_loss = deque(maxlen=30) + self.running_reward = deque(maxlen=10) + self.running_loss = deque(maxlen=10) def to(self, device): self.device = device @@ -149,7 +148,7 @@ class BaseQlearner: self.train() if step % self.target_update == 0: print('UPDATE') - polyak_update(self.q_net.parameters(), self.target_q_net.parameters(), 1.0) + polyak_update(self.q_net.parameters(), self.target_q_net.parameters(), 1) self.running_reward.append(total_reward) @@ -160,7 +159,7 @@ class BaseQlearner: def _training_routine(self, obs, next_obs, action): current_q_values = self.q_net(obs) current_q_values = torch.gather(current_q_values, dim=1, index=action) - next_q_values_raw = self.target_q_net(next_obs).max(dim=-1)[0].reshape(-1, 1).detach() + next_q_values_raw = self.target_q_net(next_obs).max(dim=1)[0].reshape(-1, 1).detach() return current_q_values, next_q_values_raw def train(self): @@ -180,10 +179,9 @@ class BaseQlearner: ) pred_q += q_values target_q_raw += next_q_values_raw - - target_q = experience.reward + (1 - experience.done) * self.gamma * target_q_raw + target_q = experience.reward + (1 - experience.done) * self.gamma * target_q_raw loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - target_q, 2)) - #print(target_q) + #print(pred_q.shape, target_q.shape) # log loss self.running_loss.append(loss.item()) @@ -208,8 +206,8 @@ if __name__ == '__main__': move_props = MovementProperties(allow_diagonal_movement=True, allow_square_movement=True, allow_no_op=False) - env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2, max_steps=400, omit_agent_slice_in_obs=False) - # env = DummyVecEnv([lambda: env]) + env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2, max_steps=400, omit_agent_slice_in_obs=False, combin_agent_slices_in_obs=True) + #env = DummyVecEnv([lambda: env]) from stable_baselines3.dqn import DQN #dqn = RegDQN('MlpPolicy', env, verbose=True, buffer_size = 50000, learning_starts = 64, batch_size = 64, @@ -220,6 +218,6 @@ if __name__ == '__main__': print(env.observation_space, env.action_space) dqn, target_dqn = BaseDQN(), BaseDQN() - learner = BaseQlearner(dqn, target_dqn, env, BaseBuffer(50000), target_update=10000, lr=0.0001, gamma=0.99, n_agents=N_AGENTS, + learner = BaseQlearner(dqn, target_dqn, env, BaseBuffer(5000), target_update=5000, lr=0.0001, gamma=0.99, n_agents=N_AGENTS, train_every_n_steps=4, eps_end=0.05, n_grad_steps=1, reg_weight=0.05, exploration_fraction=0.25, batch_size=64) learner.learn(100000)