mirror of
				https://github.com/illiumst/marl-factory-grid.git
				synced 2025-10-31 12:37:27 +01:00 
			
		
		
		
	add Munchhausen DQN refactoring
This commit is contained in:
		| @@ -206,6 +206,14 @@ class MDQN(BaseQlearner): | ||||
|         self.alpha = alpha | ||||
|         self.clip0 = clip_l0 | ||||
|  | ||||
|     def tau_ln_pi(self, qs): | ||||
|         # Custom log-sum-exp trick from page 18 to compute the e log-policy terms | ||||
|         v_k = qs.max(-1)[0].unsqueeze(-1) | ||||
|         advantage = qs - v_k | ||||
|         logsum = torch.logsumexp(advantage / self.temperature, -1).unsqueeze(-1) | ||||
|         tau_ln_pi = advantage - self.temperature * logsum | ||||
|         return tau_ln_pi | ||||
|  | ||||
|     def train(self): | ||||
|         if len(self.buffer) < self.batch_size: return | ||||
|         for _ in range(self.n_grad_steps): | ||||
| @@ -213,17 +221,14 @@ class MDQN(BaseQlearner): | ||||
|             experience = self.buffer.sample(self.batch_size, cer=self.train_every_n_steps) | ||||
|  | ||||
|             q_target_next = self.target_q_net(experience.next_observation).detach() | ||||
|             advantages_next = (q_target_next - q_target_next.max(-1)[0].unsqueeze(-1)) | ||||
|             logsum = torch.logsumexp(advantages_next / self.temperature, -1).unsqueeze(-1) | ||||
|             tau_log_pi_next = advantages_next - self.temperature * logsum | ||||
|             tau_log_pi_next = self.tau_ln_pi(q_target_next) | ||||
|  | ||||
|             q_k_targets = self.target_q_net(experience.observation).detach() | ||||
|             log_pi = self.tau_ln_pi(q_k_targets) | ||||
|  | ||||
|             pi_target = F.softmax(q_target_next / self.temperature, dim=-1) | ||||
|             q_target = (self.gamma * (pi_target * (q_target_next - tau_log_pi_next) * (1 - experience.done)).sum(-1)).unsqueeze(-1) | ||||
|  | ||||
|             q_k_targets = self.target_q_net(experience.observation).detach() | ||||
|             v_k_target = q_k_targets.max(-1)[0].unsqueeze(-1) | ||||
|             logsum = torch.logsumexp((q_k_targets - v_k_target) / self.temperature, -1).unsqueeze(-1) | ||||
|             log_pi = q_k_targets - v_k_target - self.temperature * logsum | ||||
|             munchausen_addon = log_pi.gather(-1, experience.action) | ||||
|  | ||||
|             munchausen_reward = (experience.reward + self.alpha * torch.clamp(munchausen_addon, min=self.clip0, max=0)) | ||||
| @@ -272,5 +277,5 @@ if __name__ == '__main__': | ||||
|  | ||||
|     dqn, target_dqn = BaseDQN(), BaseDQN() | ||||
|     learner = MDQN(dqn, target_dqn, env, BaseBuffer(40000), target_update=3500, lr=0.0008, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10, | ||||
|                            train_every_n_steps=4, eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25, batch_size=64) | ||||
|                    train_every_n_steps=4, eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25, batch_size=64) | ||||
|     learner.learn(100000) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 romue
					romue