mirror of
https://github.com/illiumst/marl-factory-grid.git
synced 2025-05-23 07:16:44 +02:00
add CER sampling and Munchhausen DQN
This commit is contained in:
parent
eee4760e72
commit
e541e34270
@ -1,4 +1,4 @@
|
||||
from typing import NamedTuple, Union
|
||||
from typing import NamedTuple, Union, Iterable
|
||||
from collections import namedtuple, deque
|
||||
import numpy as np
|
||||
import random
|
||||
@ -30,8 +30,9 @@ class BaseBuffer:
|
||||
def add(self, experience):
|
||||
self.experience.append(experience)
|
||||
|
||||
def sample(self, k):
|
||||
sample = random.choices(self.experience, k=k)
|
||||
def sample(self, k, cer=4):
|
||||
sample = random.choices(self.experience, k=k-cer)
|
||||
for i in range(cer): sample += [self.experience[-i]]
|
||||
observations = torch.stack([torch.from_numpy(e.observation) for e in sample], 0).float()
|
||||
next_observations = torch.stack([torch.from_numpy(e.next_observation) for e in sample], 0).float()
|
||||
actions = torch.tensor([e.action for e in sample]).long()
|
||||
@ -40,18 +41,6 @@ class BaseBuffer:
|
||||
return Experience(observations, next_observations, actions, rewards, dones)
|
||||
|
||||
|
||||
class PERBuffer(BaseBuffer):
|
||||
def __init__(self, size, alpha=0.2):
|
||||
super(PERBuffer, self).__init__(size)
|
||||
self.alpha = alpha
|
||||
|
||||
def sample(self, k):
|
||||
pr = [abs(e.priority)**self.alpha for e in self.experience]
|
||||
pr = np.array(pr) / sum(pr)
|
||||
idxs = random.choices(range(len(self)), weights=pr, k=k)
|
||||
pass
|
||||
|
||||
|
||||
class BaseDQN(nn.Module):
|
||||
def __init__(self):
|
||||
super(BaseDQN, self).__init__()
|
||||
@ -80,14 +69,21 @@ class BaseDQN(nn.Module):
|
||||
return random.randrange(0, 5)
|
||||
|
||||
|
||||
def soft_update(local_model, target_model, tau):
|
||||
# taken from https://github.com/BY571/Munchausen-RL/blob/master/M-DQN.ipynb
|
||||
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
|
||||
target_param.data.copy_(tau*local_param.data + (1.-tau)*target_param.data)
|
||||
|
||||
|
||||
class BaseQlearner:
|
||||
def __init__(self, q_net, target_q_net, env, buffer, target_update, eps_end, n_agents=1,
|
||||
gamma=0.99, train_every_n_steps=4, n_grad_steps=1,
|
||||
gamma=0.99, train_every_n_steps=4, n_grad_steps=1, tau=1.0, max_grad_norm=10,
|
||||
exploration_fraction=0.2, batch_size=64, lr=1e-4, reg_weight=0.0):
|
||||
self.q_net = q_net
|
||||
self.target_q_net = target_q_net
|
||||
self.q_net.apply(self.weights_init)
|
||||
#self.q_net.apply(self.weights_init)
|
||||
self.target_q_net.eval()
|
||||
soft_update(self.q_net, self.target_q_net, tau=1.0)
|
||||
self.env = env
|
||||
self.buffer = buffer
|
||||
self.target_update = target_update
|
||||
@ -99,10 +95,12 @@ class BaseQlearner:
|
||||
self.train_every_n_steps = train_every_n_steps
|
||||
self.n_grad_steps = n_grad_steps
|
||||
self.lr = lr
|
||||
self.tau = tau
|
||||
self.reg_weight = reg_weight
|
||||
self.n_agents = n_agents
|
||||
self.device = 'cpu'
|
||||
self.optimizer = torch.optim.AdamW(self.q_net.parameters(), lr=self.lr)
|
||||
self.max_grad_norm = max_grad_norm
|
||||
self.running_reward = deque(maxlen=5)
|
||||
self.running_loss = deque(maxlen=5)
|
||||
self._n_updates = 0
|
||||
@ -112,7 +110,7 @@ class BaseQlearner:
|
||||
return self
|
||||
|
||||
@staticmethod
|
||||
def weights_init(module, activation='relu'):
|
||||
def weights_init(module, activation='leaky_relu'):
|
||||
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
||||
nn.init.xavier_normal_(module.weight, gain=torch.nn.init.calculate_gain(activation))
|
||||
if module.bias is not None:
|
||||
@ -154,35 +152,38 @@ class BaseQlearner:
|
||||
self._n_updates += 1
|
||||
if step % self.target_update == 0:
|
||||
print('UPDATE')
|
||||
polyak_update(self.q_net.parameters(), self.target_q_net.parameters(), 1)
|
||||
|
||||
soft_update(self.q_net, self.target_q_net, tau=self.tau)
|
||||
|
||||
self.running_reward.append(total_reward)
|
||||
if step % 10 == 0:
|
||||
print(f'Step: {step} ({(step/n_steps)*100:.2f}%)\tRunning reward: {sum(list(self.running_reward))/len(self.running_reward):.2f}\t'
|
||||
f' eps: {self.eps:.4f}\tRunning loss: {sum(list(self.running_loss))/len(self.running_loss):.4f}\tUpdates:{self._n_updates}')
|
||||
|
||||
def _training_routine(self, obs, next_obs, action):
|
||||
def _training_routine(self, obs, next_obs, action, reward):
|
||||
current_q_values = self.q_net(obs)
|
||||
current_q_values = torch.gather(current_q_values, dim=-1, index=action)
|
||||
next_q_values_raw = self.target_q_net(next_obs).max(dim=-1)[0].reshape(-1, 1).detach()
|
||||
return current_q_values, next_q_values_raw
|
||||
|
||||
|
||||
def train(self):
|
||||
if len(self.buffer) < self.batch_size: return
|
||||
for _ in range(self.n_grad_steps):
|
||||
|
||||
experience = self.buffer.sample(self.batch_size)
|
||||
#print(experience.observation.shape, experience.next_observation.shape, experience.action.shape, experience.reward.shape, experience.done.shape)
|
||||
experience = self.buffer.sample(self.batch_size, cer=self.train_every_n_steps)
|
||||
|
||||
if self.n_agents <= 1:
|
||||
pred_q, target_q_raw = self._training_routine(experience.observation, experience.next_observation, experience.action)
|
||||
pred_q, target_q_raw = self._training_routine(experience.observation,
|
||||
experience.next_observation,
|
||||
experience.action,
|
||||
experience.reward)
|
||||
else:
|
||||
pred_q, target_q_raw = torch.zeros((self.batch_size, 1)), torch.zeros((self.batch_size, 1))
|
||||
pred_q, target_q_raw, reward = [torch.zeros((self.batch_size, 1))]*3
|
||||
for agent_i in range(self.n_agents):
|
||||
q_values, next_q_values_raw = self._training_routine(experience.observation[:, agent_i],
|
||||
experience.next_observation[:, agent_i],
|
||||
experience.action[:, agent_i].unsqueeze(-1)
|
||||
)
|
||||
experience.next_observation[:, agent_i],
|
||||
experience.action[:, agent_i].unsqueeze(-1),
|
||||
experience.reward)
|
||||
pred_q += q_values
|
||||
target_q_raw += next_q_values_raw
|
||||
target_q = experience.reward + (1 - experience.done) * self.gamma * target_q_raw
|
||||
@ -193,7 +194,56 @@ class BaseQlearner:
|
||||
# Optimize the model
|
||||
self.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
torch.nn.utils.clip_grad_norm_(self.q_net.parameters(), 10)
|
||||
torch.nn.utils.clip_grad_norm_(self.q_net.parameters(), self.max_grad_norm)
|
||||
self.optimizer.step()
|
||||
|
||||
|
||||
class MDQN(BaseQlearner):
|
||||
def __init__(self, *args, temperature=0.03, alpha=0.9, clip_l0=-1.0, **kwargs):
|
||||
super(MDQN, self).__init__(*args, **kwargs)
|
||||
assert self.n_agents == 1, 'M-DQN currently only supports single agent training'
|
||||
self.temperature = temperature
|
||||
self.alpha = alpha
|
||||
self.clip0 = clip_l0
|
||||
|
||||
def train(self):
|
||||
if len(self.buffer) < self.batch_size: return
|
||||
for _ in range(self.n_grad_steps):
|
||||
|
||||
experience = self.buffer.sample(self.batch_size, cer=self.train_every_n_steps)
|
||||
|
||||
q_target_next = self.target_q_net(experience.next_observation).detach()
|
||||
advantages_next = (q_target_next - q_target_next.max(-1)[0].unsqueeze(-1))
|
||||
logsum = torch.logsumexp(advantages_next / self.temperature, -1).unsqueeze(-1)
|
||||
tau_log_pi_next = advantages_next - self.temperature * logsum
|
||||
|
||||
pi_target = F.softmax(q_target_next / self.temperature, dim=-1)
|
||||
q_target = (self.gamma * (pi_target * (q_target_next - tau_log_pi_next) * (1 - experience.done)).sum(-1)).unsqueeze(-1)
|
||||
|
||||
q_k_targets = self.target_q_net(experience.observation).detach()
|
||||
v_k_target = q_k_targets.max(-1)[0].unsqueeze(-1)
|
||||
logsum = torch.logsumexp((q_k_targets - v_k_target) / self.temperature, -1).unsqueeze(-1)
|
||||
log_pi = q_k_targets - v_k_target - self.temperature * logsum
|
||||
munchausen_addon = log_pi.gather(-1, experience.action)
|
||||
|
||||
munchausen_reward = (experience.reward + self.alpha * torch.clamp(munchausen_addon, min=self.clip0, max=0))
|
||||
|
||||
# Compute Q targets for current states
|
||||
m_q_target = munchausen_reward + q_target
|
||||
|
||||
# Get expected Q values from local model
|
||||
q_k = self.q_net(experience.observation)
|
||||
pred_q = q_k.gather(-1, experience.action)
|
||||
|
||||
# Compute loss
|
||||
loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - m_q_target, 2))
|
||||
|
||||
# log loss
|
||||
self.running_loss.append(loss.item())
|
||||
# Optimize the model
|
||||
self.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
torch.nn.utils.clip_grad_norm_(self.q_net.parameters(), self.max_grad_norm)
|
||||
self.optimizer.step()
|
||||
|
||||
|
||||
@ -221,6 +271,6 @@ if __name__ == '__main__':
|
||||
|
||||
|
||||
dqn, target_dqn = BaseDQN(), BaseDQN()
|
||||
learner = BaseQlearner(dqn, target_dqn, env, BaseBuffer(40000), target_update=3500, lr=0.0008, gamma=0.99, n_agents=N_AGENTS,
|
||||
train_every_n_steps=4, eps_end=0.05, n_grad_steps=1, reg_weight=0.05, exploration_fraction=0.25, batch_size=64)
|
||||
learner = MDQN(dqn, target_dqn, env, BaseBuffer(40000), target_update=3500, lr=0.0008, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10,
|
||||
train_every_n_steps=4, eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25, batch_size=64)
|
||||
learner.learn(100000)
|
||||
|
Loading…
x
Reference in New Issue
Block a user