mirror of
				https://github.com/illiumst/marl-factory-grid.git
				synced 2025-10-31 12:37:27 +01:00 
			
		
		
		
	added own dqn
This commit is contained in:
		| @@ -56,11 +56,11 @@ class BaseDQN(nn.Module): | ||||
|     def __init__(self): | ||||
|         super(BaseDQN, self).__init__() | ||||
|         self.net = nn.Sequential( | ||||
|             nn.Linear(3*5*5, 128), | ||||
|             nn.Linear(3*5*5, 64), | ||||
|             nn.ReLU(), | ||||
|             nn.Linear(128,  128), | ||||
|             nn.Linear(64,  64), | ||||
|             nn.ReLU(), | ||||
|             nn.Linear(128, 9) | ||||
|             nn.Linear(64, 9) | ||||
|         ) | ||||
|  | ||||
|     def act(self, x) -> np.ndarray: | ||||
| @@ -81,8 +81,7 @@ class BaseQlearner: | ||||
|                  exploration_fraction=0.2, batch_size=64, lr=1e-4, reg_weight=0.0): | ||||
|         self.q_net = q_net | ||||
|         self.target_q_net = target_q_net | ||||
|         #self.q_net.apply(self.weights_init) | ||||
|         polyak_update(self.q_net.parameters(), self.target_q_net.parameters(), 1) | ||||
|         self.q_net.apply(self.weights_init) | ||||
|         self.target_q_net.eval() | ||||
|         self.env = env | ||||
|         self.buffer = buffer | ||||
| @@ -99,8 +98,8 @@ class BaseQlearner: | ||||
|         self.n_agents = n_agents | ||||
|         self.device = 'cpu' | ||||
|         self.optimizer = torch.optim.Adam(self.q_net.parameters(), lr=self.lr) | ||||
|         self.running_reward = deque(maxlen=30) | ||||
|         self.running_loss = deque(maxlen=30) | ||||
|         self.running_reward = deque(maxlen=10) | ||||
|         self.running_loss = deque(maxlen=10) | ||||
|  | ||||
|     def to(self, device): | ||||
|         self.device = device | ||||
| @@ -149,7 +148,7 @@ class BaseQlearner: | ||||
|                     self.train() | ||||
|                 if step % self.target_update == 0: | ||||
|                     print('UPDATE') | ||||
|                     polyak_update(self.q_net.parameters(), self.target_q_net.parameters(), 1.0) | ||||
|                     polyak_update(self.q_net.parameters(), self.target_q_net.parameters(), 1) | ||||
|  | ||||
|  | ||||
|             self.running_reward.append(total_reward) | ||||
| @@ -160,7 +159,7 @@ class BaseQlearner: | ||||
|     def _training_routine(self, obs, next_obs, action): | ||||
|         current_q_values = self.q_net(obs) | ||||
|         current_q_values = torch.gather(current_q_values, dim=1, index=action) | ||||
|         next_q_values_raw = self.target_q_net(next_obs).max(dim=-1)[0].reshape(-1, 1).detach() | ||||
|         next_q_values_raw = self.target_q_net(next_obs).max(dim=1)[0].reshape(-1, 1).detach() | ||||
|         return current_q_values, next_q_values_raw | ||||
|  | ||||
|     def train(self): | ||||
| @@ -180,10 +179,9 @@ class BaseQlearner: | ||||
|                                                                          ) | ||||
|                     pred_q += q_values | ||||
|                     target_q_raw += next_q_values_raw | ||||
|  | ||||
|             target_q = experience.reward + (1 - experience.done) * self.gamma * target_q_raw | ||||
|             target_q = experience.reward  + (1 - experience.done) * self.gamma * target_q_raw | ||||
|             loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - target_q, 2)) | ||||
|             #print(target_q) | ||||
|             #print(pred_q.shape, target_q.shape) | ||||
|  | ||||
|             # log loss | ||||
|             self.running_loss.append(loss.item()) | ||||
| @@ -208,8 +206,8 @@ if __name__ == '__main__': | ||||
|     move_props = MovementProperties(allow_diagonal_movement=True, | ||||
|                                     allow_square_movement=True, | ||||
|                                     allow_no_op=False) | ||||
|     env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2,  max_steps=400, omit_agent_slice_in_obs=False) | ||||
|     # env = DummyVecEnv([lambda: env]) | ||||
|     env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2,  max_steps=400, omit_agent_slice_in_obs=False, combin_agent_slices_in_obs=True) | ||||
|     #env = DummyVecEnv([lambda: env]) | ||||
|     from stable_baselines3.dqn import DQN | ||||
|  | ||||
|     #dqn = RegDQN('MlpPolicy', env, verbose=True, buffer_size = 50000, learning_starts = 64, batch_size = 64, | ||||
| @@ -220,6 +218,6 @@ if __name__ == '__main__': | ||||
|  | ||||
|     print(env.observation_space, env.action_space) | ||||
|     dqn, target_dqn = BaseDQN(), BaseDQN() | ||||
|     learner = BaseQlearner(dqn, target_dqn, env, BaseBuffer(50000), target_update=10000, lr=0.0001, gamma=0.99, n_agents=N_AGENTS, | ||||
|     learner = BaseQlearner(dqn, target_dqn, env, BaseBuffer(5000), target_update=5000, lr=0.0001, gamma=0.99, n_agents=N_AGENTS, | ||||
|                            train_every_n_steps=4, eps_end=0.05, n_grad_steps=1, reg_weight=0.05, exploration_fraction=0.25, batch_size=64) | ||||
|     learner.learn(100000) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 romue
					romue