Done: AE, VAE, AAE
ToDo: Double AAE, Visualization All Modularized
This commit is contained in:
66
networks/adverserial_auto_encoder.py
Normal file
66
networks/adverserial_auto_encoder.py
Normal file
@ -0,0 +1,66 @@
|
||||
from networks.auto_encoder import AutoEncoder
|
||||
from torch.nn.functional import mse_loss
|
||||
from torch.nn import Sequential, Linear, ReLU, Dropout, Sigmoid
|
||||
from torch.distributions import Normal
|
||||
from networks.modules import *
|
||||
import torch
|
||||
|
||||
|
||||
class AdversarialAutoEncoder(AutoEncoder):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(AdversarialAutoEncoder, self).__init__(*args, **kwargs)
|
||||
self.discriminator = Discriminator(self.latent_dim, self.dataParams)
|
||||
|
||||
def forward(self, batch):
|
||||
# Encoder
|
||||
# outputs, hidden (Batch, Timesteps aka. Size, Features / Latent Dim Size)
|
||||
z = self.encoder(batch)
|
||||
# Decoder
|
||||
# First repeat the data accordingly to the batch size
|
||||
z_repeatet = Repeater((batch.shape[0], self.dataParams['size'], -1))(z)
|
||||
x_hat = self.decoder(z_repeatet)
|
||||
return z, x_hat
|
||||
|
||||
|
||||
class AdversarialAELightningOverrides:
|
||||
|
||||
def forward(self, x):
|
||||
return self.network.forward(x)
|
||||
|
||||
def training_step(self, batch, _, optimizer_i):
|
||||
if optimizer_i == 0:
|
||||
# ---------------------
|
||||
# Train Discriminator
|
||||
# ---------------------
|
||||
# latent_fake, reconstruction
|
||||
latent_fake, _ = self.network.forward(batch)
|
||||
latent_real = self.normal.sample(latent_fake.shape)
|
||||
|
||||
# Evaluate the input
|
||||
d_real_prediction = self.network.discriminator.forward(latent_real)
|
||||
d_fake_prediction = self.network.discriminator.forward(latent_fake)
|
||||
|
||||
# Train the discriminator
|
||||
d_loss_real = mse_loss(d_real_prediction, torch.zeros(d_real_prediction.shape))
|
||||
d_loss_fake = mse_loss(d_fake_prediction, torch.ones(d_fake_prediction.shape))
|
||||
|
||||
# Calculate the mean over both the real and the fake acc
|
||||
d_loss = 0.5 * torch.add(d_loss_real, d_loss_fake)
|
||||
return {'loss': d_loss}
|
||||
|
||||
elif optimizer_i == 1:
|
||||
# ---------------------
|
||||
# Train AutoEncoder
|
||||
# ---------------------
|
||||
# z, x_hat
|
||||
_, batch_hat = self.forward(batch)
|
||||
loss = mse_loss(batch, batch_hat)
|
||||
return {'loss': loss}
|
||||
|
||||
else:
|
||||
raise RuntimeError('This should not have happened, catch me if u can.')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
raise PermissionError('Get out of here - never run this module')
|
45
networks/auto_encoder.py
Normal file
45
networks/auto_encoder.py
Normal file
@ -0,0 +1,45 @@
|
||||
from .modules import *
|
||||
from torch.nn.functional import mse_loss
|
||||
from torch import Tensor
|
||||
|
||||
|
||||
#######################
|
||||
# Basic AE-Implementation
|
||||
class AutoEncoder(Module, ABC):
|
||||
|
||||
@property
|
||||
def name(self):
|
||||
return self.__class__.__name__
|
||||
|
||||
def __init__(self, dataParams, **kwargs):
|
||||
super(AutoEncoder, self).__init__()
|
||||
self.dataParams = dataParams
|
||||
self.latent_dim = kwargs.get('latent_dim', 2)
|
||||
self.encoder = Encoder(self.latent_dim)
|
||||
self.decoder = Decoder(self.latent_dim, self.dataParams['features'])
|
||||
|
||||
def forward(self, batch: Tensor):
|
||||
# Encoder
|
||||
# outputs, hidden (Batch, Timesteps aka. Size, Features / Latent Dim Size)
|
||||
z = self.encoder(batch)
|
||||
# Decoder
|
||||
# First repeat the data accordingly to the batch size
|
||||
z_repeatet = Repeater((batch.shape[0], self.dataParams['size'], -1))(z)
|
||||
x_hat = self.decoder(z_repeatet)
|
||||
return z, x_hat
|
||||
|
||||
|
||||
class AutoEncoderLightningOverrides:
|
||||
|
||||
def forward(self, x):
|
||||
return self.network.forward(x)
|
||||
|
||||
def training_step(self, x, batch_nb):
|
||||
# z, x_hat
|
||||
_, x_hat = self.forward(x)
|
||||
loss = mse_loss(x, x_hat)
|
||||
return {'loss': loss}
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
raise PermissionError('Get out of here - never run this module')
|
@ -1,73 +0,0 @@
|
||||
from torch.nn import Sequential, Linear, GRU, ReLU, Tanh
|
||||
from .modules import *
|
||||
from torch.nn.functional import mse_loss
|
||||
|
||||
|
||||
|
||||
#######################
|
||||
# Basic AE-Implementation
|
||||
class BasicAE(Module, ABC):
|
||||
|
||||
@property
|
||||
def name(self):
|
||||
return self.__class__.__name__
|
||||
|
||||
def __init__(self, dataParams, **kwargs):
|
||||
super(BasicAE, self).__init__()
|
||||
self.dataParams = dataParams
|
||||
self.latent_dim = kwargs.get('latent_dim', 2)
|
||||
self.encoder = self._build_encoder()
|
||||
self.decoder = self._build_decoder(out_shape=self.dataParams['features'])
|
||||
|
||||
def _build_encoder(self):
|
||||
encoder = Sequential(
|
||||
Linear(6, 100, bias=True),
|
||||
ReLU(),
|
||||
Linear(100, 10, bias=True),
|
||||
ReLU()
|
||||
)
|
||||
gru = Sequential(
|
||||
TimeDistributed(encoder),
|
||||
GRU(10, 10, batch_first=True),
|
||||
RNNOutputFilter(only_last=True),
|
||||
Linear(10, self.latent_dim)
|
||||
)
|
||||
return gru
|
||||
|
||||
def _build_decoder(self, out_shape):
|
||||
decoder = Sequential(
|
||||
Linear(10, 100, bias=True),
|
||||
ReLU(),
|
||||
Linear(100, out_shape, bias=True),
|
||||
Tanh()
|
||||
)
|
||||
|
||||
gru = Sequential(
|
||||
GRU(self.latent_dim, 10,batch_first=True),
|
||||
RNNOutputFilter(),
|
||||
TimeDistributed(decoder)
|
||||
)
|
||||
return gru
|
||||
|
||||
def forward(self, batch: torch.Tensor):
|
||||
# Encoder
|
||||
# outputs, hidden (Batch, Timesteps aka. Size, Features / Latent Dim Size)
|
||||
z = self.encoder(batch)
|
||||
# Decoder
|
||||
# First repeat the data accordingly to the batch size
|
||||
z = Repeater((batch.shape[0], self.dataParams['size'], -1))(z)
|
||||
x_hat = self.decoder(z)
|
||||
return z, x_hat
|
||||
|
||||
|
||||
class AELightningOverrides:
|
||||
|
||||
def training_step(self, x, batch_nb):
|
||||
# z, x_hat
|
||||
_, x_hat = self.forward(x)
|
||||
loss = mse_loss(x, x_hat)
|
||||
return {'loss': loss}
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
raise PermissionError('Get out of here - never run this module')
|
@ -1,81 +0,0 @@
|
||||
from torch.nn import Sequential, Linear, GRU, ReLU
|
||||
from .modules import *
|
||||
from torch.nn.functional import mse_loss
|
||||
|
||||
|
||||
#######################
|
||||
# Basic AE-Implementation
|
||||
class BasicVAE(Module, ABC):
|
||||
|
||||
@property
|
||||
def name(self):
|
||||
return self.__class__.__name__
|
||||
|
||||
def __init__(self, dataParams, **kwargs):
|
||||
super(BasicVAE, self).__init__()
|
||||
self.dataParams = dataParams
|
||||
self.latent_dim = kwargs.get('latent_dim', 2)
|
||||
self.encoder = self._build_encoder()
|
||||
self.decoder = self._build_decoder(out_shape=self.dataParams['features'])
|
||||
self.mu, self.logvar = Linear(10, self.latent_dim), Linear(10, self.latent_dim)
|
||||
|
||||
def _build_encoder(self):
|
||||
linear_stack = Sequential(
|
||||
Linear(6, 100, bias=True),
|
||||
ReLU(),
|
||||
Linear(100, 10, bias=True),
|
||||
ReLU()
|
||||
)
|
||||
encoder = Sequential(
|
||||
TimeDistributed(linear_stack),
|
||||
GRU(10, 10, batch_first=True),
|
||||
RNNOutputFilter(only_last=True),
|
||||
)
|
||||
return encoder
|
||||
|
||||
def reparameterize(self, mu, logvar):
|
||||
# Lambda Layer, add gaussian noise
|
||||
std = torch.exp(0.5*logvar)
|
||||
eps = torch.randn_like(std)
|
||||
return mu + eps*std
|
||||
|
||||
def _build_decoder(self, out_shape):
|
||||
decoder = Sequential(
|
||||
Linear(10, 100, bias=True),
|
||||
ReLU(),
|
||||
Linear(100, out_shape, bias=True),
|
||||
ReLU()
|
||||
)
|
||||
|
||||
sequential_decoder = Sequential(
|
||||
GRU(self.latent_dim, 10, batch_first=True),
|
||||
RNNOutputFilter(),
|
||||
TimeDistributed(decoder)
|
||||
)
|
||||
return sequential_decoder
|
||||
|
||||
def forward(self, batch):
|
||||
encoding = self.encoder(batch)
|
||||
mu_logvar = self.mu(encoding), self.logvar(encoding)
|
||||
z = self.reparameterize(*mu_logvar)
|
||||
repeat = Repeater((batch.shape[0], self.dataParams['size'], -1))
|
||||
x_hat = self.decoder(repeat(z))
|
||||
return (x_hat, *mu_logvar)
|
||||
|
||||
|
||||
class VAELightningOverrides:
|
||||
|
||||
def training_step(self, x, batch_nb):
|
||||
x_hat, logvar, mu = self.forward(x)
|
||||
BCE = mse_loss(x_hat, x, reduction='mean')
|
||||
|
||||
# see Appendix B from VAE paper:
|
||||
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
|
||||
# https://arxiv.org/abs/1312.6114
|
||||
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
|
||||
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
|
||||
return {'loss': BCE + KLD}
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
raise PermissionError('Get out of here - never run this module')
|
@ -1,6 +1,6 @@
|
||||
import torch
|
||||
import pytorch_lightning as pl
|
||||
from torch.nn import Module
|
||||
from torch.nn import Module, Linear, ReLU, Tanh, Sigmoid, Dropout, GRU
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
@ -85,9 +85,10 @@ class Repeater(Module):
|
||||
self.shape = shape
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
x.unsqueeze_(-2)
|
||||
x = x.unsqueeze(-2)
|
||||
return x.expand(self.shape)
|
||||
|
||||
|
||||
class RNNOutputFilter(Module):
|
||||
|
||||
def __init__(self, return_output=True, only_last=False):
|
||||
@ -101,5 +102,108 @@ class RNNOutputFilter(Module):
|
||||
return out if not self.only_last else out[:, -1, :]
|
||||
|
||||
|
||||
#######################
|
||||
# Network Modules
|
||||
# Generators, Decoders, Encoders, Discriminators
|
||||
class Discriminator(Module):
|
||||
|
||||
def __init__(self, latent_dim, dataParams, dropout=.0, activation=ReLU):
|
||||
super(Discriminator, self).__init__()
|
||||
self.dataParams = dataParams
|
||||
self.latent_dim = latent_dim
|
||||
self.l1 = Linear(self.latent_dim, self.dataParams['features'] * 10)
|
||||
self.l2 = Linear(self.dataParams['features']*10, self.dataParams['features'] * 20)
|
||||
self.lout = Linear(self.dataParams['features']*20, 1)
|
||||
self.dropout = Dropout(dropout)
|
||||
self.activation = activation()
|
||||
self.sigmoid = Sigmoid()
|
||||
|
||||
def forward(self, x, **kwargs):
|
||||
tensor = self.l1(x)
|
||||
tensor = self.dropout(self.activation(tensor))
|
||||
tensor = self.l2(tensor)
|
||||
tensor = self.dropout(self.activation(tensor))
|
||||
tensor = self.lout(tensor)
|
||||
tensor = self.sigmoid(tensor)
|
||||
return tensor
|
||||
|
||||
|
||||
class DecoderLinearStack(Module):
|
||||
|
||||
def __init__(self, out_shape):
|
||||
super(DecoderLinearStack, self).__init__()
|
||||
self.l1 = Linear(10, 100, bias=True)
|
||||
self.l2 = Linear(100, out_shape, bias=True)
|
||||
self.activation = ReLU()
|
||||
self.activation_out = Tanh()
|
||||
|
||||
def forward(self, x):
|
||||
tensor = self.l1(x)
|
||||
tensor = self.activation(tensor)
|
||||
tensor = self.l2(tensor)
|
||||
tensor = self.activation_out(tensor)
|
||||
return tensor
|
||||
|
||||
|
||||
class EncoderLinearStack(Module):
|
||||
|
||||
def __init__(self):
|
||||
super(EncoderLinearStack, self).__init__()
|
||||
self.l1 = Linear(6, 100, bias=True)
|
||||
self.l2 = Linear(100, 10, bias=True)
|
||||
self.activation = ReLU()
|
||||
|
||||
def forward(self, x):
|
||||
tensor = self.l1(x)
|
||||
tensor = self.activation(tensor)
|
||||
tensor = self.l2(tensor)
|
||||
tensor = self.activation(tensor)
|
||||
return tensor
|
||||
|
||||
|
||||
class Encoder(Module):
|
||||
|
||||
def __init__(self, lat_dim, variational=False):
|
||||
self.lat_dim = lat_dim
|
||||
self.variational = variational
|
||||
|
||||
super(Encoder, self).__init__()
|
||||
self.l_stack = TimeDistributed(EncoderLinearStack())
|
||||
self.gru = GRU(10, 10, batch_first=True)
|
||||
self.filter = RNNOutputFilter(only_last=True)
|
||||
if variational:
|
||||
self.mu = Linear(10, self.lat_dim)
|
||||
self.logvar = Linear(10, self.lat_dim)
|
||||
else:
|
||||
self.lat_dim_layer = Linear(10, self.lat_dim)
|
||||
|
||||
def forward(self, x):
|
||||
tensor = self.l_stack(x)
|
||||
tensor = self.gru(tensor)
|
||||
tensor = self.filter(tensor)
|
||||
if self.variational:
|
||||
tensor = self.mu(tensor), self.logvar(tensor)
|
||||
else:
|
||||
tensor = self.lat_dim_layer(tensor)
|
||||
return tensor
|
||||
|
||||
|
||||
class Decoder(Module):
|
||||
|
||||
def __init__(self, latent_dim, *args, variational=False):
|
||||
self.variational = variational
|
||||
super(Decoder, self).__init__()
|
||||
self.g = GRU(latent_dim, 10, batch_first=True)
|
||||
self.filter = RNNOutputFilter()
|
||||
self.l_stack = TimeDistributed(DecoderLinearStack(*args))
|
||||
pass
|
||||
|
||||
def forward(self, x):
|
||||
tensor = self.g(x)
|
||||
tensor = self.filter(tensor)
|
||||
tensor = self.l_stack(tensor)
|
||||
return tensor
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
raise PermissionError('Get out of here - never run this module')
|
||||
|
53
networks/variational_auto_encoder.py
Normal file
53
networks/variational_auto_encoder.py
Normal file
@ -0,0 +1,53 @@
|
||||
from .modules import *
|
||||
from torch.nn.functional import mse_loss
|
||||
|
||||
|
||||
#######################
|
||||
# Basic AE-Implementation
|
||||
class VariationalAutoEncoder(Module, ABC):
|
||||
|
||||
@property
|
||||
def name(self):
|
||||
return self.__class__.__name__
|
||||
|
||||
def __init__(self, dataParams, **kwargs):
|
||||
super(VariationalAutoEncoder, self).__init__()
|
||||
self.dataParams = dataParams
|
||||
self.latent_dim = kwargs.get('latent_dim', 2)
|
||||
self.encoder = Encoder(self.latent_dim, variational=True)
|
||||
self.decoder = Decoder(self.latent_dim, self.dataParams['features'], variational=True)
|
||||
|
||||
@staticmethod
|
||||
def reparameterize(mu, logvar):
|
||||
# Lambda Layer, add gaussian noise
|
||||
std = torch.exp(0.5*logvar)
|
||||
eps = torch.randn_like(std)
|
||||
return mu + eps*std
|
||||
|
||||
def forward(self, batch):
|
||||
mu, logvar = self.encoder(batch)
|
||||
z = self.reparameterize(mu, logvar)
|
||||
repeat = Repeater((batch.shape[0], self.dataParams['size'], -1))
|
||||
x_hat = self.decoder(repeat(z))
|
||||
return x_hat, mu, logvar
|
||||
|
||||
|
||||
class VariationalAutoEncoderLightningOverrides:
|
||||
|
||||
def forward(self, x):
|
||||
return self.network.forward(x)
|
||||
|
||||
def training_step(self, x, _):
|
||||
x_hat, logvar, mu = self.forward(x)
|
||||
BCE = mse_loss(x_hat, x, reduction='mean')
|
||||
|
||||
# see Appendix B from VAE paper:
|
||||
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
|
||||
# https://arxiv.org/abs/1312.6114
|
||||
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
|
||||
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
|
||||
return {'loss': BCE + KLD}
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
raise PermissionError('Get out of here - never run this module')
|
Reference in New Issue
Block a user