Fixed the Model classes, Visualization
This commit is contained in:
@ -1,3 +1,5 @@
|
||||
from torch.distributions import Normal
|
||||
|
||||
from networks.auto_encoder import *
|
||||
import os
|
||||
import time
|
||||
@ -18,90 +20,54 @@ from argparse import Namespace
|
||||
from argparse import ArgumentParser
|
||||
|
||||
args = ArgumentParser()
|
||||
args.add_argument('step')
|
||||
args.add_argument('features')
|
||||
args.add_argument('size')
|
||||
args.add_argument('latent_dim')
|
||||
args.add_argument('--step', default=0)
|
||||
args.add_argument('--features', default=0)
|
||||
args.add_argument('--size', default=0)
|
||||
args.add_argument('--latent_dim', default=0)
|
||||
args.add_argument('--model', default='Model')
|
||||
|
||||
|
||||
# ToDo: How to implement this better?
|
||||
# other_classes = [AutoEncoder, AutoEncoderLightningOverrides]
|
||||
class Model(AutoEncoderLightningOverrides, LightningModule):
|
||||
|
||||
def __init__(self, latent_dim=0, size=0, step=0, features=0, **kwargs):
|
||||
assert all([x in args for x in ['step', 'size', 'latent_dim', 'features']])
|
||||
self.size = args.size
|
||||
self.latent_dim = args.latent_dim
|
||||
self.features = args.features
|
||||
self.step = args.step
|
||||
def __init__(self, parameters, **kwargs):
|
||||
assert all([x in parameters for x in ['step', 'size', 'latent_dim', 'features']])
|
||||
self.size = parameters.size
|
||||
self.latent_dim = parameters.latent_dim
|
||||
self.features = parameters.features
|
||||
self.step = parameters.step
|
||||
super(Model, self).__init__()
|
||||
self.network = AutoEncoder(self.latent_dim, self.features)
|
||||
|
||||
def configure_optimizers(self):
|
||||
return [Adam(self.parameters(), lr=0.02)]
|
||||
|
||||
@data_loader
|
||||
def tng_dataloader(self):
|
||||
return DataLoader(DataContainer('data', self.size, self.step), shuffle=True, batch_size=100)
|
||||
|
||||
|
||||
class AdversarialModel(AdversarialAELightningOverrides, LightningModule):
|
||||
|
||||
@property
|
||||
def name(self):
|
||||
return self.network.name
|
||||
|
||||
def __init__(self, args: Namespace, **kwargs):
|
||||
assert all([x in args for x in ['step', 'size', 'latent_dim', 'features']])
|
||||
self.size = args.size
|
||||
self.latent_dim = args.latent_dim
|
||||
self.features = args.features
|
||||
self.step = args.step
|
||||
def __init__(self, parameters: Namespace, **kwargs):
|
||||
assert all([x in parameters for x in ['step', 'size', 'latent_dim', 'features']])
|
||||
self.size = parameters.size
|
||||
self.latent_dim = parameters.latent_dim
|
||||
self.features = parameters.features
|
||||
self.step = parameters.step
|
||||
super(AdversarialModel, self).__init__()
|
||||
self.normal = Normal(0, 1)
|
||||
self.network = AdversarialAutoEncoder(self.latent_dim, self.features)
|
||||
pass
|
||||
|
||||
# This is Fucked up, why do i need to put an additional empty list here?
|
||||
def configure_optimizers(self):
|
||||
return [Adam(self.network.discriminator.parameters(), lr=0.02),
|
||||
Adam([*self.network.encoder.parameters(), *self.network.decoder.parameters()], lr=0.02)],\
|
||||
[]
|
||||
|
||||
@data_loader
|
||||
def tng_dataloader(self):
|
||||
return DataLoader(DataContainer('data', self.size, self.step), shuffle=True, batch_size=100)
|
||||
|
||||
|
||||
class SeparatingAdversarialModel(SeparatingAdversarialAELightningOverrides, LightningModule):
|
||||
|
||||
def __init__(self, args: Namespace, **kwargs):
|
||||
assert all([x in args for x in ['step', 'size', 'latent_dim', 'features']])
|
||||
self.size = args.size
|
||||
self.latent_dim = args.latent_dim
|
||||
self.features = args.features
|
||||
self.step = args.step
|
||||
def __init__(self, parameters: Namespace, **kwargs):
|
||||
assert all([x in parameters for x in ['step', 'size', 'latent_dim', 'features']])
|
||||
self.size = parameters.size
|
||||
self.latent_dim = parameters.latent_dim
|
||||
self.features = parameters.features
|
||||
self.step = parameters.step
|
||||
super(SeparatingAdversarialModel, self).__init__()
|
||||
self.normal = Normal(0, 1)
|
||||
self.network = SeperatingAdversarialAutoEncoder(self.latent_dim, self.features, **kwargs)
|
||||
pass
|
||||
|
||||
# This is Fucked up, why do i need to put an additional empty list here?
|
||||
def configure_optimizers(self):
|
||||
return [Adam([*self.network.spatial_discriminator.parameters(), *self.network.spatial_encoder.parameters()]
|
||||
, lr=0.02),
|
||||
Adam([*self.network.temporal_discriminator.parameters(), *self.network.temporal_encoder.parameters()]
|
||||
, lr=0.02),
|
||||
Adam([*self.network.temporal_encoder.parameters(),
|
||||
*self.network.spatial_encoder.parameters(),
|
||||
*self.network.decoder.parameters()]
|
||||
, lr=0.02)], []
|
||||
|
||||
@data_loader
|
||||
def tng_dataloader(self):
|
||||
num_workers = os.cpu_count() // 2
|
||||
return DataLoader(DataContainer('data', self.size, self.step), shuffle=True, batch_size=100, num_workers=num_workers)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
features = 6
|
||||
@ -110,7 +76,7 @@ if __name__ == '__main__':
|
||||
arguments = args.parse_args()
|
||||
arguments.__dict__.update(tag_dict)
|
||||
|
||||
model = SeparatingAdversarialModel(arguments)
|
||||
model = globals()[arguments.model](arguments)
|
||||
|
||||
# PyTorch summarywriter with a few bells and whistles
|
||||
outpath = os.path.join(os.getcwd(), 'output', model.name, time.asctime().replace(' ', '_').replace(':', '-'))
|
||||
@ -124,7 +90,7 @@ if __name__ == '__main__':
|
||||
filepath=os.path.join(outpath, 'weights.ckpt'),
|
||||
save_best_only=True,
|
||||
verbose=True,
|
||||
monitor='tng_loss', # val_loss
|
||||
monitor='val_loss', # val_loss
|
||||
mode='min',
|
||||
)
|
||||
|
||||
|
Reference in New Issue
Block a user