Fixed the Model classes, Visualization

This commit is contained in:
Si11ium
2019-08-23 13:10:47 +02:00
parent 0e879bfdb1
commit 7b0b96eaa3
16 changed files with 141 additions and 469 deletions

@ -1,3 +1,5 @@
from torch.distributions import Normal
from networks.auto_encoder import *
import os
import time
@ -18,90 +20,54 @@ from argparse import Namespace
from argparse import ArgumentParser
args = ArgumentParser()
args.add_argument('step')
args.add_argument('features')
args.add_argument('size')
args.add_argument('latent_dim')
args.add_argument('--step', default=0)
args.add_argument('--features', default=0)
args.add_argument('--size', default=0)
args.add_argument('--latent_dim', default=0)
args.add_argument('--model', default='Model')
# ToDo: How to implement this better?
# other_classes = [AutoEncoder, AutoEncoderLightningOverrides]
class Model(AutoEncoderLightningOverrides, LightningModule):
def __init__(self, latent_dim=0, size=0, step=0, features=0, **kwargs):
assert all([x in args for x in ['step', 'size', 'latent_dim', 'features']])
self.size = args.size
self.latent_dim = args.latent_dim
self.features = args.features
self.step = args.step
def __init__(self, parameters, **kwargs):
assert all([x in parameters for x in ['step', 'size', 'latent_dim', 'features']])
self.size = parameters.size
self.latent_dim = parameters.latent_dim
self.features = parameters.features
self.step = parameters.step
super(Model, self).__init__()
self.network = AutoEncoder(self.latent_dim, self.features)
def configure_optimizers(self):
return [Adam(self.parameters(), lr=0.02)]
@data_loader
def tng_dataloader(self):
return DataLoader(DataContainer('data', self.size, self.step), shuffle=True, batch_size=100)
class AdversarialModel(AdversarialAELightningOverrides, LightningModule):
@property
def name(self):
return self.network.name
def __init__(self, args: Namespace, **kwargs):
assert all([x in args for x in ['step', 'size', 'latent_dim', 'features']])
self.size = args.size
self.latent_dim = args.latent_dim
self.features = args.features
self.step = args.step
def __init__(self, parameters: Namespace, **kwargs):
assert all([x in parameters for x in ['step', 'size', 'latent_dim', 'features']])
self.size = parameters.size
self.latent_dim = parameters.latent_dim
self.features = parameters.features
self.step = parameters.step
super(AdversarialModel, self).__init__()
self.normal = Normal(0, 1)
self.network = AdversarialAutoEncoder(self.latent_dim, self.features)
pass
# This is Fucked up, why do i need to put an additional empty list here?
def configure_optimizers(self):
return [Adam(self.network.discriminator.parameters(), lr=0.02),
Adam([*self.network.encoder.parameters(), *self.network.decoder.parameters()], lr=0.02)],\
[]
@data_loader
def tng_dataloader(self):
return DataLoader(DataContainer('data', self.size, self.step), shuffle=True, batch_size=100)
class SeparatingAdversarialModel(SeparatingAdversarialAELightningOverrides, LightningModule):
def __init__(self, args: Namespace, **kwargs):
assert all([x in args for x in ['step', 'size', 'latent_dim', 'features']])
self.size = args.size
self.latent_dim = args.latent_dim
self.features = args.features
self.step = args.step
def __init__(self, parameters: Namespace, **kwargs):
assert all([x in parameters for x in ['step', 'size', 'latent_dim', 'features']])
self.size = parameters.size
self.latent_dim = parameters.latent_dim
self.features = parameters.features
self.step = parameters.step
super(SeparatingAdversarialModel, self).__init__()
self.normal = Normal(0, 1)
self.network = SeperatingAdversarialAutoEncoder(self.latent_dim, self.features, **kwargs)
pass
# This is Fucked up, why do i need to put an additional empty list here?
def configure_optimizers(self):
return [Adam([*self.network.spatial_discriminator.parameters(), *self.network.spatial_encoder.parameters()]
, lr=0.02),
Adam([*self.network.temporal_discriminator.parameters(), *self.network.temporal_encoder.parameters()]
, lr=0.02),
Adam([*self.network.temporal_encoder.parameters(),
*self.network.spatial_encoder.parameters(),
*self.network.decoder.parameters()]
, lr=0.02)], []
@data_loader
def tng_dataloader(self):
num_workers = os.cpu_count() // 2
return DataLoader(DataContainer('data', self.size, self.step), shuffle=True, batch_size=100, num_workers=num_workers)
if __name__ == '__main__':
features = 6
@ -110,7 +76,7 @@ if __name__ == '__main__':
arguments = args.parse_args()
arguments.__dict__.update(tag_dict)
model = SeparatingAdversarialModel(arguments)
model = globals()[arguments.model](arguments)
# PyTorch summarywriter with a few bells and whistles
outpath = os.path.join(os.getcwd(), 'output', model.name, time.asctime().replace(' ', '_').replace(':', '-'))
@ -124,7 +90,7 @@ if __name__ == '__main__':
filepath=os.path.join(outpath, 'weights.ckpt'),
save_best_only=True,
verbose=True,
monitor='tng_loss', # val_loss
monitor='val_loss', # val_loss
mode='min',
)