Done: First VIsualization
ToDo: Visualization for all classes, latent space setups
This commit is contained in:
parent
8aa3b3616f
commit
744c0c50b7
26
.idea/workspace.xml
generated
26
.idea/workspace.xml
generated
@ -1,7 +1,16 @@
|
|||||||
<?xml version="1.0" encoding="UTF-8"?>
|
<?xml version="1.0" encoding="UTF-8"?>
|
||||||
<project version="4">
|
<project version="4">
|
||||||
<component name="ChangeListManager">
|
<component name="ChangeListManager">
|
||||||
<list default="true" id="5955480a-c876-43d5-afd7-8717f51f413e" name="Default Changelist" comment="" />
|
<list default="true" id="5955480a-c876-43d5-afd7-8717f51f413e" name="Default Changelist" comment="">
|
||||||
|
<change afterPath="$PROJECT_DIR$/networks/seperating_adversarial_auto_encoder.py" afterDir="false" />
|
||||||
|
<change afterPath="$PROJECT_DIR$/viz/viz_latent.py" afterDir="false" />
|
||||||
|
<change beforePath="$PROJECT_DIR$/.idea/workspace.xml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/workspace.xml" afterDir="false" />
|
||||||
|
<change beforePath="$PROJECT_DIR$/networks/adverserial_auto_encoder.py" beforeDir="false" afterPath="$PROJECT_DIR$/networks/adverserial_auto_encoder.py" afterDir="false" />
|
||||||
|
<change beforePath="$PROJECT_DIR$/networks/auto_encoder.py" beforeDir="false" afterPath="$PROJECT_DIR$/networks/auto_encoder.py" afterDir="false" />
|
||||||
|
<change beforePath="$PROJECT_DIR$/networks/modules.py" beforeDir="false" afterPath="$PROJECT_DIR$/networks/modules.py" afterDir="false" />
|
||||||
|
<change beforePath="$PROJECT_DIR$/networks/variational_auto_encoder.py" beforeDir="false" afterPath="$PROJECT_DIR$/networks/variational_auto_encoder.py" afterDir="false" />
|
||||||
|
<change beforePath="$PROJECT_DIR$/run_models.py" beforeDir="false" afterPath="$PROJECT_DIR$/run_models.py" afterDir="false" />
|
||||||
|
</list>
|
||||||
<option name="EXCLUDED_CONVERTED_TO_IGNORED" value="true" />
|
<option name="EXCLUDED_CONVERTED_TO_IGNORED" value="true" />
|
||||||
<option name="SHOW_DIALOG" value="false" />
|
<option name="SHOW_DIALOG" value="false" />
|
||||||
<option name="HIGHLIGHT_CONFLICTS" value="true" />
|
<option name="HIGHLIGHT_CONFLICTS" value="true" />
|
||||||
@ -144,7 +153,7 @@
|
|||||||
<workItem from="1564587420277" duration="6891000" />
|
<workItem from="1564587420277" duration="6891000" />
|
||||||
<workItem from="1565364574595" duration="1092000" />
|
<workItem from="1565364574595" duration="1092000" />
|
||||||
<workItem from="1565592214301" duration="53660000" />
|
<workItem from="1565592214301" duration="53660000" />
|
||||||
<workItem from="1565793671730" duration="30478000" />
|
<workItem from="1565793671730" duration="53296000" />
|
||||||
</task>
|
</task>
|
||||||
<task id="LOCAL-00001" summary="Lightning integration basic ae, dataloaders and dataset">
|
<task id="LOCAL-00001" summary="Lightning integration basic ae, dataloaders and dataset">
|
||||||
<created>1565793753423</created>
|
<created>1565793753423</created>
|
||||||
@ -167,7 +176,14 @@
|
|||||||
<option name="project" value="LOCAL" />
|
<option name="project" value="LOCAL" />
|
||||||
<updated>1565987964760</updated>
|
<updated>1565987964760</updated>
|
||||||
</task>
|
</task>
|
||||||
<option name="localTasksCounter" value="4" />
|
<task id="LOCAL-00004" summary="Done: AE, VAE, AAE ToDo: Double AAE, Visualization All Modularized">
|
||||||
|
<created>1566064016196</created>
|
||||||
|
<option name="number" value="00004" />
|
||||||
|
<option name="presentableId" value="LOCAL-00004" />
|
||||||
|
<option name="project" value="LOCAL" />
|
||||||
|
<updated>1566064016196</updated>
|
||||||
|
</task>
|
||||||
|
<option name="localTasksCounter" value="5" />
|
||||||
<servers />
|
<servers />
|
||||||
</component>
|
</component>
|
||||||
<component name="TypeScriptGeneratedFilesManager">
|
<component name="TypeScriptGeneratedFilesManager">
|
||||||
@ -196,7 +212,7 @@
|
|||||||
<breakpoints>
|
<breakpoints>
|
||||||
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
||||||
<url>file://$PROJECT_DIR$/run_models.py</url>
|
<url>file://$PROJECT_DIR$/run_models.py</url>
|
||||||
<line>20</line>
|
<line>23</line>
|
||||||
<option name="timeStamp" value="27" />
|
<option name="timeStamp" value="27" />
|
||||||
</line-breakpoint>
|
</line-breakpoint>
|
||||||
</breakpoints>
|
</breakpoints>
|
||||||
@ -214,7 +230,7 @@
|
|||||||
<SUITE FILE_PATH="coverage/ae_toolbox_torch$basic_ae_lightning.coverage" NAME="basic_ae_lightning Coverage Results" MODIFIED="1565956491159" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
|
<SUITE FILE_PATH="coverage/ae_toolbox_torch$basic_ae_lightning.coverage" NAME="basic_ae_lightning Coverage Results" MODIFIED="1565956491159" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
|
||||||
<SUITE FILE_PATH="coverage/ae_toolbox_torch$basic_vae_lightning.coverage" NAME="basic_vae_lightning Coverage Results" MODIFIED="1565955311009" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
|
<SUITE FILE_PATH="coverage/ae_toolbox_torch$basic_vae_lightning.coverage" NAME="basic_vae_lightning Coverage Results" MODIFIED="1565955311009" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
|
||||||
<SUITE FILE_PATH="coverage/ae_toolbox_torch$run_basic_ae.coverage" NAME="run_basic_ae Coverage Results" MODIFIED="1565966122607" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
|
<SUITE FILE_PATH="coverage/ae_toolbox_torch$run_basic_ae.coverage" NAME="run_basic_ae Coverage Results" MODIFIED="1565966122607" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
|
||||||
<SUITE FILE_PATH="coverage/ae_toolbox_torch$run_models.coverage" NAME="run_models Coverage Results" MODIFIED="1565987843914" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
|
<SUITE FILE_PATH="coverage/ae_toolbox_torch$run_models.coverage" NAME="run_models Coverage Results" MODIFIED="1566306843739" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
|
||||||
<SUITE FILE_PATH="coverage/ae_toolbox_torch$dataset.coverage" NAME="dataset Coverage Results" MODIFIED="1565772669750" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$/data" />
|
<SUITE FILE_PATH="coverage/ae_toolbox_torch$dataset.coverage" NAME="dataset Coverage Results" MODIFIED="1565772669750" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$/data" />
|
||||||
</component>
|
</component>
|
||||||
</project>
|
</project>
|
@ -25,6 +25,10 @@ class AdversarialAutoEncoder(AutoEncoder):
|
|||||||
|
|
||||||
class AdversarialAELightningOverrides:
|
class AdversarialAELightningOverrides:
|
||||||
|
|
||||||
|
@property
|
||||||
|
def name(self):
|
||||||
|
return self.__class__.__name__
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
return self.network.forward(x)
|
return self.network.forward(x)
|
||||||
|
|
||||||
@ -46,6 +50,7 @@ class AdversarialAELightningOverrides:
|
|||||||
d_loss_fake = mse_loss(d_fake_prediction, torch.ones(d_fake_prediction.shape))
|
d_loss_fake = mse_loss(d_fake_prediction, torch.ones(d_fake_prediction.shape))
|
||||||
|
|
||||||
# Calculate the mean over both the real and the fake acc
|
# Calculate the mean over both the real and the fake acc
|
||||||
|
# ToDo: do i need to compute this seperate?
|
||||||
d_loss = 0.5 * torch.add(d_loss_real, d_loss_fake)
|
d_loss = 0.5 * torch.add(d_loss_real, d_loss_fake)
|
||||||
return {'loss': d_loss}
|
return {'loss': d_loss}
|
||||||
|
|
||||||
|
@ -5,16 +5,12 @@ from torch import Tensor
|
|||||||
|
|
||||||
#######################
|
#######################
|
||||||
# Basic AE-Implementation
|
# Basic AE-Implementation
|
||||||
class AutoEncoder(Module, ABC):
|
class AutoEncoder(AbstractNeuralNetwork, ABC):
|
||||||
|
|
||||||
@property
|
def __init__(self, latent_dim: int, dataParams: dict, **kwargs):
|
||||||
def name(self):
|
|
||||||
return self.__class__.__name__
|
|
||||||
|
|
||||||
def __init__(self, dataParams, **kwargs):
|
|
||||||
super(AutoEncoder, self).__init__()
|
super(AutoEncoder, self).__init__()
|
||||||
self.dataParams = dataParams
|
self.dataParams = dataParams
|
||||||
self.latent_dim = kwargs.get('latent_dim', 2)
|
self.latent_dim = latent_dim
|
||||||
self.encoder = Encoder(self.latent_dim)
|
self.encoder = Encoder(self.latent_dim)
|
||||||
self.decoder = Decoder(self.latent_dim, self.dataParams['features'])
|
self.decoder = Decoder(self.latent_dim, self.dataParams['features'])
|
||||||
|
|
||||||
@ -31,6 +27,10 @@ class AutoEncoder(Module, ABC):
|
|||||||
|
|
||||||
class AutoEncoderLightningOverrides:
|
class AutoEncoderLightningOverrides:
|
||||||
|
|
||||||
|
@property
|
||||||
|
def name(self):
|
||||||
|
return self.__class__.__name__
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
return self.network.forward(x)
|
return self.network.forward(x)
|
||||||
|
|
||||||
|
@ -1,9 +1,24 @@
|
|||||||
import torch
|
import torch
|
||||||
import pytorch_lightning as pl
|
import pytorch_lightning as pl
|
||||||
from torch.nn import Module, Linear, ReLU, Tanh, Sigmoid, Dropout, GRU
|
from torch.nn import Module, Linear, ReLU, Tanh, Sigmoid, Dropout, GRU, AvgPool2d
|
||||||
|
|
||||||
from abc import ABC, abstractmethod
|
from abc import ABC, abstractmethod
|
||||||
|
|
||||||
|
#######################
|
||||||
|
# Abstract NN Class
|
||||||
|
|
||||||
|
class AbstractNeuralNetwork(Module):
|
||||||
|
|
||||||
|
@property
|
||||||
|
def name(self):
|
||||||
|
return self.__class__.__name__
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super(AbstractNeuralNetwork, self).__init__()
|
||||||
|
|
||||||
|
def forward(self, batch):
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
######################
|
######################
|
||||||
# Abstract Network class following the Lightning Syntax
|
# Abstract Network class following the Lightning Syntax
|
||||||
@ -102,6 +117,15 @@ class RNNOutputFilter(Module):
|
|||||||
return out if not self.only_last else out[:, -1, :]
|
return out if not self.only_last else out[:, -1, :]
|
||||||
|
|
||||||
|
|
||||||
|
class AvgDimPool(Module):
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super(AvgDimPool, self).__init__()
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return x.mean(-2)
|
||||||
|
|
||||||
|
|
||||||
#######################
|
#######################
|
||||||
# Network Modules
|
# Network Modules
|
||||||
# Generators, Decoders, Encoders, Discriminators
|
# Generators, Decoders, Encoders, Discriminators
|
||||||
@ -112,8 +136,8 @@ class Discriminator(Module):
|
|||||||
self.dataParams = dataParams
|
self.dataParams = dataParams
|
||||||
self.latent_dim = latent_dim
|
self.latent_dim = latent_dim
|
||||||
self.l1 = Linear(self.latent_dim, self.dataParams['features'] * 10)
|
self.l1 = Linear(self.latent_dim, self.dataParams['features'] * 10)
|
||||||
self.l2 = Linear(self.dataParams['features']*10, self.dataParams['features'] * 20)
|
self.l2 = Linear(self.dataParams['features'] * 10, self.dataParams['features'] * 20)
|
||||||
self.lout = Linear(self.dataParams['features']*20, 1)
|
self.lout = Linear(self.dataParams['features'] * 20, 1)
|
||||||
self.dropout = Dropout(dropout)
|
self.dropout = Dropout(dropout)
|
||||||
self.activation = activation()
|
self.activation = activation()
|
||||||
self.sigmoid = Sigmoid()
|
self.sigmoid = Sigmoid()
|
||||||
@ -149,6 +173,7 @@ class EncoderLinearStack(Module):
|
|||||||
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
super(EncoderLinearStack, self).__init__()
|
super(EncoderLinearStack, self).__init__()
|
||||||
|
# FixMe: Get Hardcoded shit out of here
|
||||||
self.l1 = Linear(6, 100, bias=True)
|
self.l1 = Linear(6, 100, bias=True)
|
||||||
self.l2 = Linear(100, 10, bias=True)
|
self.l2 = Linear(100, 10, bias=True)
|
||||||
self.activation = ReLU()
|
self.activation = ReLU()
|
||||||
@ -188,6 +213,31 @@ class Encoder(Module):
|
|||||||
return tensor
|
return tensor
|
||||||
|
|
||||||
|
|
||||||
|
class PoolingEncoder(Module):
|
||||||
|
|
||||||
|
def __init__(self, lat_dim, variational=False):
|
||||||
|
self.lat_dim = lat_dim
|
||||||
|
self.variational = variational
|
||||||
|
|
||||||
|
super(PoolingEncoder, self).__init__()
|
||||||
|
self.p = AvgDimPool()
|
||||||
|
self.l = EncoderLinearStack()
|
||||||
|
if variational:
|
||||||
|
self.mu = Linear(10, self.lat_dim)
|
||||||
|
self.logvar = Linear(10, self.lat_dim)
|
||||||
|
else:
|
||||||
|
self.lat_dim_layer = Linear(10, self.lat_dim)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
tensor = self.p(x)
|
||||||
|
tensor = self.l(tensor)
|
||||||
|
if self.variational:
|
||||||
|
tensor = self.mu(tensor), self.logvar(tensor)
|
||||||
|
else:
|
||||||
|
tensor = self.lat_dim_layer(tensor)
|
||||||
|
return tensor
|
||||||
|
|
||||||
|
|
||||||
class Decoder(Module):
|
class Decoder(Module):
|
||||||
|
|
||||||
def __init__(self, latent_dim, *args, variational=False):
|
def __init__(self, latent_dim, *args, variational=False):
|
||||||
|
96
networks/seperating_adversarial_auto_encoder.py
Normal file
96
networks/seperating_adversarial_auto_encoder.py
Normal file
@ -0,0 +1,96 @@
|
|||||||
|
from networks.auto_encoder import AutoEncoder
|
||||||
|
from torch.nn.functional import mse_loss
|
||||||
|
from networks.modules import *
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
class SeperatingAdversarialAutoEncoder(Module):
|
||||||
|
|
||||||
|
def __init__(self, latent_dim, dataParams, **kwargs):
|
||||||
|
assert latent_dim % 2 == 0, f'Your latent space needs to be even, not odd, but was: "{latent_dim}"'
|
||||||
|
super(SeperatingAdversarialAutoEncoder, self).__init__()
|
||||||
|
|
||||||
|
self.latent_dim = latent_dim
|
||||||
|
self.dataParams = dataParams
|
||||||
|
self.spatial_encoder = PoolingEncoder(self.latent_dim // 2)
|
||||||
|
self.temporal_encoder = Encoder(self.latent_dim // 2)
|
||||||
|
self.decoder = Decoder(self.latent_dim, self.dataParams['features'])
|
||||||
|
self.spatial_discriminator = Discriminator(self.latent_dim // 2, self.dataParams)
|
||||||
|
self.temporal_discriminator = Discriminator(self.latent_dim // 2, self.dataParams)
|
||||||
|
|
||||||
|
def forward(self, batch):
|
||||||
|
# Encoder
|
||||||
|
# outputs, hidden (Batch, Timesteps aka. Size, Features / Latent Dim Size)
|
||||||
|
z_spatial, z_temporal = self.spatial_encoder(batch), self.temporal_encoder(batch)
|
||||||
|
# Decoder
|
||||||
|
# First repeat the data accordingly to the batch size
|
||||||
|
z_concat = torch.cat((z_spatial, z_temporal), dim=-1)
|
||||||
|
z_repeatet = Repeater((batch.shape[0], self.dataParams['size'], -1))(z_concat)
|
||||||
|
x_hat = self.decoder(z_repeatet)
|
||||||
|
return z_spatial, z_temporal, x_hat
|
||||||
|
|
||||||
|
|
||||||
|
class SeparatingAdversarialAELightningOverrides:
|
||||||
|
|
||||||
|
@property
|
||||||
|
def name(self):
|
||||||
|
return self.__class__.__name__
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.network.forward(x)
|
||||||
|
|
||||||
|
def training_step(self, batch, _, optimizer_i):
|
||||||
|
spatial_latent_fake, temporal_latent_fake, batch_hat = self.network.forward(batch)
|
||||||
|
if optimizer_i == 0:
|
||||||
|
# ---------------------
|
||||||
|
# Train temporal Discriminator
|
||||||
|
# ---------------------
|
||||||
|
# latent_fake, reconstruction
|
||||||
|
temporal_latent_real = self.normal.sample(temporal_latent_fake.shape)
|
||||||
|
|
||||||
|
# Evaluate the input
|
||||||
|
temporal_real_prediction = self.network.temporal_discriminator.forward(temporal_latent_real)
|
||||||
|
temporal_fake_prediction = self.network.temporal_discriminator.forward(temporal_latent_fake)
|
||||||
|
|
||||||
|
# Train the discriminator
|
||||||
|
temporal_loss_real = mse_loss(temporal_real_prediction, torch.zeros(temporal_real_prediction.shape))
|
||||||
|
temporal_loss_fake = mse_loss(temporal_fake_prediction, torch.ones(temporal_fake_prediction.shape))
|
||||||
|
|
||||||
|
# Calculate the mean over bot the real and the fake acc
|
||||||
|
# ToDo: do i need to compute this seperate?
|
||||||
|
d_loss = 0.5 * torch.add(temporal_loss_real, temporal_loss_fake)
|
||||||
|
return {'loss': d_loss}
|
||||||
|
|
||||||
|
if optimizer_i == 1:
|
||||||
|
# ---------------------
|
||||||
|
# Train spatial Discriminator
|
||||||
|
# ---------------------
|
||||||
|
# latent_fake, reconstruction
|
||||||
|
spatial_latent_real = self.normal.sample(spatial_latent_fake.shape)
|
||||||
|
|
||||||
|
# Evaluate the input
|
||||||
|
spatial_real_prediction = self.network.spatial_discriminator.forward(spatial_latent_real)
|
||||||
|
spatial_fake_prediction = self.network.spatial_discriminator.forward(spatial_latent_fake)
|
||||||
|
|
||||||
|
# Train the discriminator
|
||||||
|
spatial_loss_real = mse_loss(spatial_real_prediction, torch.zeros(spatial_real_prediction.shape))
|
||||||
|
spatial_loss_fake = mse_loss(spatial_fake_prediction, torch.ones(spatial_fake_prediction.shape))
|
||||||
|
|
||||||
|
# Calculate the mean over bot the real and the fake acc
|
||||||
|
# ToDo: do i need to compute this seperate?
|
||||||
|
d_loss = 0.5 * torch.add(spatial_loss_real, spatial_loss_fake)
|
||||||
|
return {'loss': d_loss}
|
||||||
|
|
||||||
|
elif optimizer_i == 2:
|
||||||
|
# ---------------------
|
||||||
|
# Train AutoEncoder
|
||||||
|
# ---------------------
|
||||||
|
loss = mse_loss(batch, batch_hat)
|
||||||
|
return {'loss': loss}
|
||||||
|
|
||||||
|
else:
|
||||||
|
raise RuntimeError('This should not have happened, catch me if u can.')
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
raise PermissionError('Get out of here - never run this module')
|
@ -4,7 +4,7 @@ from torch.nn.functional import mse_loss
|
|||||||
|
|
||||||
#######################
|
#######################
|
||||||
# Basic AE-Implementation
|
# Basic AE-Implementation
|
||||||
class VariationalAutoEncoder(Module, ABC):
|
class VariationalAutoEncoder(AbstractNeuralNetwork, ABC):
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def name(self):
|
def name(self):
|
||||||
@ -34,6 +34,10 @@ class VariationalAutoEncoder(Module, ABC):
|
|||||||
|
|
||||||
class VariationalAutoEncoderLightningOverrides:
|
class VariationalAutoEncoderLightningOverrides:
|
||||||
|
|
||||||
|
@property
|
||||||
|
def name(self):
|
||||||
|
return self.network.name
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
return self.network.forward(x)
|
return self.network.forward(x)
|
||||||
|
|
||||||
|
@ -1,6 +1,9 @@
|
|||||||
from networks.auto_encoder import *
|
from networks.auto_encoder import *
|
||||||
|
import os
|
||||||
|
import time
|
||||||
from networks.variational_auto_encoder import *
|
from networks.variational_auto_encoder import *
|
||||||
from networks.adverserial_auto_encoder import *
|
from networks.adverserial_auto_encoder import *
|
||||||
|
from networks.seperating_adversarial_auto_encoder import *
|
||||||
from networks.modules import LightningModule
|
from networks.modules import LightningModule
|
||||||
from torch.optim import Adam
|
from torch.optim import Adam
|
||||||
from torch.utils.data import DataLoader
|
from torch.utils.data import DataLoader
|
||||||
@ -9,7 +12,7 @@ from dataset import DataContainer
|
|||||||
|
|
||||||
from torch.nn import BatchNorm1d
|
from torch.nn import BatchNorm1d
|
||||||
from pytorch_lightning import Trainer
|
from pytorch_lightning import Trainer
|
||||||
|
from test_tube import Experiment
|
||||||
|
|
||||||
# ToDo: How to implement this better?
|
# ToDo: How to implement this better?
|
||||||
# other_classes = [AutoEncoder, AutoEncoderLightningOverrides]
|
# other_classes = [AutoEncoder, AutoEncoderLightningOverrides]
|
||||||
@ -30,6 +33,10 @@ class Model(VariationalAutoEncoderLightningOverrides, LightningModule):
|
|||||||
|
|
||||||
class AdversarialModel(AdversarialAELightningOverrides, LightningModule):
|
class AdversarialModel(AdversarialAELightningOverrides, LightningModule):
|
||||||
|
|
||||||
|
@property
|
||||||
|
def name(self):
|
||||||
|
return self.network.name
|
||||||
|
|
||||||
def __init__(self, dataParams: dict):
|
def __init__(self, dataParams: dict):
|
||||||
super(AdversarialModel, self).__init__()
|
super(AdversarialModel, self).__init__()
|
||||||
self.dataParams = dataParams
|
self.dataParams = dataParams
|
||||||
@ -48,13 +55,61 @@ class AdversarialModel(AdversarialAELightningOverrides, LightningModule):
|
|||||||
return DataLoader(DataContainer('data', **self.dataParams), shuffle=True, batch_size=100)
|
return DataLoader(DataContainer('data', **self.dataParams), shuffle=True, batch_size=100)
|
||||||
|
|
||||||
|
|
||||||
|
class SeparatingAdversarialModel(SeparatingAdversarialAELightningOverrides, LightningModule):
|
||||||
|
|
||||||
|
def __init__(self, latent_dim, dataParams: dict):
|
||||||
|
super(SeparatingAdversarialModel, self).__init__()
|
||||||
|
self.latent_dim = latent_dim
|
||||||
|
self.dataParams = dataParams
|
||||||
|
self.normal = Normal(0, 1)
|
||||||
|
self.network = SeperatingAdversarialAutoEncoder(self.latent_dim, self.dataParams)
|
||||||
|
pass
|
||||||
|
|
||||||
|
# This is Fucked up, why do i need to put an additional empty list here?
|
||||||
|
def configure_optimizers(self):
|
||||||
|
return [Adam([*self.network.spatial_discriminator.parameters(), *self.network.spatial_encoder.parameters()]
|
||||||
|
, lr=0.02),
|
||||||
|
Adam([*self.network.temporal_discriminator.parameters(), *self.network.temporal_encoder.parameters()]
|
||||||
|
, lr=0.02),
|
||||||
|
Adam([*self.network.temporal_encoder.parameters(),
|
||||||
|
*self.network.spatial_encoder.parameters(),
|
||||||
|
*self.network.decoder.parameters()]
|
||||||
|
, lr=0.02)], []
|
||||||
|
|
||||||
|
@data_loader
|
||||||
|
def tng_dataloader(self):
|
||||||
|
return DataLoader(DataContainer('data', **self.dataParams), shuffle=True, batch_size=100)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
|
||||||
features = 6
|
features = 6
|
||||||
ae = AdversarialModel(
|
latent_dim = 4
|
||||||
dataParams=dict(refresh=False, size=5, step=5,
|
model = SeparatingAdversarialModel(latent_dim=latent_dim, dataParams=dict(refresh=False, size=5, step=5,
|
||||||
features=features, transforms=[BatchNorm1d(features)]
|
features=features, transforms=[BatchNorm1d(features)]
|
||||||
)
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
# PyTorch summarywriter with a few bells and whistles
|
||||||
|
outpath = os.path.join(os.getcwd(), 'output', model.name, time.asctime().replace(' ', '_').replace(':', '-'))
|
||||||
|
os.makedirs(outpath, exist_ok=True)
|
||||||
|
exp = Experiment(save_dir=outpath)
|
||||||
|
|
||||||
|
from pytorch_lightning.callbacks import ModelCheckpoint
|
||||||
|
|
||||||
|
checkpoint_callback = ModelCheckpoint(
|
||||||
|
filepath=os.path.join(outpath, 'weights.ckpt'),
|
||||||
|
save_best_only=True,
|
||||||
|
verbose=True,
|
||||||
|
monitor='val_loss',
|
||||||
|
mode='min',
|
||||||
|
|
||||||
)
|
)
|
||||||
|
|
||||||
trainer = Trainer()
|
trainer = Trainer(experiment=exp, checkpoint_callback=checkpoint_callback, max_nb_epochs=15) # gpus=[0...LoL]
|
||||||
trainer.fit(ae)
|
trainer.fit(model)
|
||||||
|
trainer.save_checkpoint(os.path.join(outpath, 'weights.ckpt'))
|
||||||
|
|
||||||
|
# view tensorflow logs
|
||||||
|
print(f'View tensorboard logs by running\ntensorboard --logdir {outpath}')
|
||||||
|
print('and going to http://localhost:6006 on your browser')
|
||||||
|
71
viz/viz_latent.py
Normal file
71
viz/viz_latent.py
Normal file
@ -0,0 +1,71 @@
|
|||||||
|
# TODO: THIS
|
||||||
|
import seaborn as sb
|
||||||
|
import torch
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
from pytorch_lightning import data_loader
|
||||||
|
from dataset import DataContainer
|
||||||
|
import os
|
||||||
|
|
||||||
|
from sklearn.manifold import TSNE
|
||||||
|
from sklearn.decomposition import PCA
|
||||||
|
|
||||||
|
import seaborn as sns; sns.set()
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
from run_models import SeparatingAdversarialModel
|
||||||
|
|
||||||
|
path = 'output'
|
||||||
|
mylightningmodule = 'weired name, loaded from disk'
|
||||||
|
|
||||||
|
|
||||||
|
# FIXME: How to store hyperparamters in testtube element?
|
||||||
|
|
||||||
|
|
||||||
|
def search_for_weights(folder):
|
||||||
|
for element in os.scandir(folder):
|
||||||
|
if os.path.exists(element):
|
||||||
|
if element.is_dir():
|
||||||
|
search_for_weights(element.path)
|
||||||
|
elif element.is_file() and element.name.endswith('.ckpt'):
|
||||||
|
load_and_viz(element)
|
||||||
|
else:
|
||||||
|
continue
|
||||||
|
|
||||||
|
|
||||||
|
def load_and_viz(path_like_element):
|
||||||
|
|
||||||
|
# Define Loop to search for models and folder with visualizations
|
||||||
|
pretrained_model = SeparatingAdversarialModel.load_from_metrics(
|
||||||
|
weights_path=path_like_element.path,
|
||||||
|
tags_csv=os.path.join(os.path.dirname(path_like_element), 'default', 'version_0', 'meta_tags.csv'),
|
||||||
|
on_gpu=True if torch.cuda.is_available() else False,
|
||||||
|
map_location=None
|
||||||
|
)
|
||||||
|
|
||||||
|
# Init model and freeze its weights ( for faster inference)
|
||||||
|
pretrained_model.eval()
|
||||||
|
pretrained_model.freeze()
|
||||||
|
|
||||||
|
# Load the data fpr prediction
|
||||||
|
dataset = DataContainer('data', 5, 5)
|
||||||
|
|
||||||
|
# Do the inference
|
||||||
|
predictions = []
|
||||||
|
for i in range(len(dataset)):
|
||||||
|
z, _ = pretrained_model(dataset[i])
|
||||||
|
predictions.append(z)
|
||||||
|
predictions = torch.cat(predictions)
|
||||||
|
if predictions.shape[-1] <= 1:
|
||||||
|
raise ValueError('How did this happen?')
|
||||||
|
elif predictions.shape[-1] == 2:
|
||||||
|
ax = sns.scatterplot(x=predictions[:, 0], y=predictions[:, 1])
|
||||||
|
plt.show()
|
||||||
|
return ax
|
||||||
|
else:
|
||||||
|
fig, axs = plt.subplots(ncols=2)
|
||||||
|
predictions_pca = PCA(n_components=2)
|
||||||
|
predictions_tsne = TSNE(n_components=2)
|
||||||
|
pca_plot = sns.scatterplot(x=predictions_pca[:, 0], y=predictions_pca[:, 1], ax=axs[0])
|
||||||
|
tsne_plot = sns.scatterplot(x=predictions_tsne[:, 0], y=predictions_tsne[:, 1], ax=axs[1])
|
||||||
|
plt.show()
|
||||||
|
return fig, axs, pca_plot, tsne_plot
|
Loading…
x
Reference in New Issue
Block a user