ae_toolbox_torch/networks/variational_auto_encoder.py
Si11ium 744c0c50b7 Done: First VIsualization
ToDo: Visualization for all classes, latent space setups
2019-08-21 07:56:31 +02:00

58 lines
1.8 KiB
Python

from .modules import *
from torch.nn.functional import mse_loss
#######################
# Basic AE-Implementation
class VariationalAutoEncoder(AbstractNeuralNetwork, ABC):
@property
def name(self):
return self.__class__.__name__
def __init__(self, dataParams, **kwargs):
super(VariationalAutoEncoder, self).__init__()
self.dataParams = dataParams
self.latent_dim = kwargs.get('latent_dim', 2)
self.encoder = Encoder(self.latent_dim, variational=True)
self.decoder = Decoder(self.latent_dim, self.dataParams['features'], variational=True)
@staticmethod
def reparameterize(mu, logvar):
# Lambda Layer, add gaussian noise
std = torch.exp(0.5*logvar)
eps = torch.randn_like(std)
return mu + eps*std
def forward(self, batch):
mu, logvar = self.encoder(batch)
z = self.reparameterize(mu, logvar)
repeat = Repeater((batch.shape[0], self.dataParams['size'], -1))
x_hat = self.decoder(repeat(z))
return x_hat, mu, logvar
class VariationalAutoEncoderLightningOverrides:
@property
def name(self):
return self.network.name
def forward(self, x):
return self.network.forward(x)
def training_step(self, x, _):
x_hat, logvar, mu = self.forward(x)
BCE = mse_loss(x_hat, x, reduction='mean')
# see Appendix B from VAE paper:
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
# https://arxiv.org/abs/1312.6114
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return {'loss': BCE + KLD}
if __name__ == '__main__':
raise PermissionError('Get out of here - never run this module')