Files
ae_toolbox_torch/viz/viz_latent.py
Si11ium 744c0c50b7 Done: First VIsualization
ToDo: Visualization for all classes, latent space setups
2019-08-21 07:56:31 +02:00

72 lines
2.2 KiB
Python

# TODO: THIS
import seaborn as sb
import torch
from torch.utils.data import DataLoader
from pytorch_lightning import data_loader
from dataset import DataContainer
import os
from sklearn.manifold import TSNE
from sklearn.decomposition import PCA
import seaborn as sns; sns.set()
import matplotlib.pyplot as plt
from run_models import SeparatingAdversarialModel
path = 'output'
mylightningmodule = 'weired name, loaded from disk'
# FIXME: How to store hyperparamters in testtube element?
def search_for_weights(folder):
for element in os.scandir(folder):
if os.path.exists(element):
if element.is_dir():
search_for_weights(element.path)
elif element.is_file() and element.name.endswith('.ckpt'):
load_and_viz(element)
else:
continue
def load_and_viz(path_like_element):
# Define Loop to search for models and folder with visualizations
pretrained_model = SeparatingAdversarialModel.load_from_metrics(
weights_path=path_like_element.path,
tags_csv=os.path.join(os.path.dirname(path_like_element), 'default', 'version_0', 'meta_tags.csv'),
on_gpu=True if torch.cuda.is_available() else False,
map_location=None
)
# Init model and freeze its weights ( for faster inference)
pretrained_model.eval()
pretrained_model.freeze()
# Load the data fpr prediction
dataset = DataContainer('data', 5, 5)
# Do the inference
predictions = []
for i in range(len(dataset)):
z, _ = pretrained_model(dataset[i])
predictions.append(z)
predictions = torch.cat(predictions)
if predictions.shape[-1] <= 1:
raise ValueError('How did this happen?')
elif predictions.shape[-1] == 2:
ax = sns.scatterplot(x=predictions[:, 0], y=predictions[:, 1])
plt.show()
return ax
else:
fig, axs = plt.subplots(ncols=2)
predictions_pca = PCA(n_components=2)
predictions_tsne = TSNE(n_components=2)
pca_plot = sns.scatterplot(x=predictions_pca[:, 0], y=predictions_pca[:, 1], ax=axs[0])
tsne_plot = sns.scatterplot(x=predictions_tsne[:, 0], y=predictions_tsne[:, 1], ax=axs[1])
plt.show()
return fig, axs, pca_plot, tsne_plot