Final Train Runs
This commit is contained in:
parent
2c9cb2e94a
commit
a018b29979
@ -15,6 +15,9 @@ sr = 16000
|
||||
hop_length = 128
|
||||
n_fft = 256
|
||||
|
||||
sample_segment_len=50
|
||||
sample_hop_len=20
|
||||
|
||||
random_apply_chance = 0.7
|
||||
loudness_ratio = 0.0
|
||||
shift_ratio = 0.3
|
||||
@ -27,7 +30,7 @@ activation = gelu
|
||||
use_bias = True
|
||||
use_norm = True
|
||||
use_residual = True
|
||||
dropout = 0.2
|
||||
dropout = 0.21
|
||||
|
||||
lat_dim = 32
|
||||
patch_size = 8
|
||||
|
2
main.py
2
main.py
@ -37,8 +37,6 @@ def run_lightning_loop(h_params, data_class, model_class, seed=69, additional_ca
|
||||
# Learning Rate Logger
|
||||
lr_logger = LearningRateMonitor(logging_interval='epoch')
|
||||
|
||||
|
||||
|
||||
# Track best scores
|
||||
score_callback = BestScoresCallback(['PL_recall_score'])
|
||||
|
||||
|
@ -13,13 +13,13 @@ if __name__ == '__main__':
|
||||
hparams_dict = dict(seed=range(10),
|
||||
model_name=['VisualTransformer'],
|
||||
batch_size=[50],
|
||||
max_epochs=[250],
|
||||
max_epochs=[200],
|
||||
random_apply_chance=[0.3], # trial.suggest_float('random_apply_chance', 0.1, 0.5, step=0.1),
|
||||
loudness_ratio=[0], # trial.suggest_float('loudness_ratio', 0.0, 0.5, step=0.1),
|
||||
shift_ratio=[0.3], # trial.suggest_float('shift_ratio', 0.0, 0.5, step=0.1),
|
||||
noise_ratio=[0.3], # trial.suggest_float('noise_ratio', 0.0, 0.5, step=0.1),
|
||||
mask_ratio=[0.3], # trial.suggest_float('mask_ratio', 0.0, 0.5, step=0.1),
|
||||
lr=[5e-3], # trial.suggest_uniform('lr', 1e-3, 3e-3),
|
||||
lr=[2e-3], # trial.suggest_uniform('lr', 1e-3, 3e-3),
|
||||
dropout=[0.2], # trial.suggest_float('dropout', 0.0, 0.3, step=0.05),
|
||||
lat_dim=[32], # 2 ** trial.suggest_int('lat_dim', 1, 5, step=1),
|
||||
mlp_dim=[16], # 2 ** trial.suggest_int('mlp_dim', 1, 5, step=1),
|
||||
@ -28,7 +28,7 @@ if __name__ == '__main__':
|
||||
attn_depth=[10], # trial.suggest_int('attn_depth', 2, 14, step=4),
|
||||
heads=[6], # trial.suggest_int('heads', 2, 16, step=2),
|
||||
scheduler=['CosineAnnealingWarmRestarts'], # trial.suggest_categorical('scheduler', [None, 'LambdaLR']),
|
||||
lr_scheduler_parameter=[25], # [0.98],
|
||||
lr_scheduler_parameter=[5], # [0.98],
|
||||
embedding_size=[30], # trial.suggest_int('embedding_size', 12, 64, step=12),
|
||||
loss=['ce_loss'],
|
||||
sampler=['WeightedRandomSampler'],
|
||||
|
@ -26,7 +26,7 @@ class OptimizerMixin:
|
||||
optimizer_dict.update(optimizer=optimizer)
|
||||
|
||||
if self.params.scheduler == CosineAnnealingWarmRestarts.__name__:
|
||||
scheduler = CosineAnnealingWarmRestarts(optimizer, self.params.lr_scheduler_parameter)
|
||||
scheduler = CosineAnnealingWarmRestarts(optimizer, T_0=self.params.lr_scheduler_parameter)
|
||||
elif self.params.scheduler == LambdaLR.__name__:
|
||||
lr_reduce_ratio = self.params.lr_scheduler_parameter
|
||||
scheduler = LambdaLR(optimizer, lr_lambda=lambda epoch: lr_reduce_ratio ** epoch)
|
||||
|
Loading…
x
Reference in New Issue
Block a user