diff --git a/_parameters.ini b/_parameters.ini index 2ebd093..71c3084 100644 --- a/_parameters.ini +++ b/_parameters.ini @@ -15,6 +15,9 @@ sr = 16000 hop_length = 128 n_fft = 256 +sample_segment_len=50 +sample_hop_len=20 + random_apply_chance = 0.7 loudness_ratio = 0.0 shift_ratio = 0.3 @@ -27,7 +30,7 @@ activation = gelu use_bias = True use_norm = True use_residual = True -dropout = 0.2 +dropout = 0.21 lat_dim = 32 patch_size = 8 diff --git a/main.py b/main.py index 85cd039..fd50ef4 100644 --- a/main.py +++ b/main.py @@ -37,8 +37,6 @@ def run_lightning_loop(h_params, data_class, model_class, seed=69, additional_ca # Learning Rate Logger lr_logger = LearningRateMonitor(logging_interval='epoch') - - # Track best scores score_callback = BestScoresCallback(['PL_recall_score']) diff --git a/multi_run.py b/multi_run.py index ee6e30b..e4989b8 100644 --- a/multi_run.py +++ b/multi_run.py @@ -13,13 +13,13 @@ if __name__ == '__main__': hparams_dict = dict(seed=range(10), model_name=['VisualTransformer'], batch_size=[50], - max_epochs=[250], + max_epochs=[200], random_apply_chance=[0.3], # trial.suggest_float('random_apply_chance', 0.1, 0.5, step=0.1), loudness_ratio=[0], # trial.suggest_float('loudness_ratio', 0.0, 0.5, step=0.1), shift_ratio=[0.3], # trial.suggest_float('shift_ratio', 0.0, 0.5, step=0.1), noise_ratio=[0.3], # trial.suggest_float('noise_ratio', 0.0, 0.5, step=0.1), mask_ratio=[0.3], # trial.suggest_float('mask_ratio', 0.0, 0.5, step=0.1), - lr=[5e-3], # trial.suggest_uniform('lr', 1e-3, 3e-3), + lr=[2e-3], # trial.suggest_uniform('lr', 1e-3, 3e-3), dropout=[0.2], # trial.suggest_float('dropout', 0.0, 0.3, step=0.05), lat_dim=[32], # 2 ** trial.suggest_int('lat_dim', 1, 5, step=1), mlp_dim=[16], # 2 ** trial.suggest_int('mlp_dim', 1, 5, step=1), @@ -28,7 +28,7 @@ if __name__ == '__main__': attn_depth=[10], # trial.suggest_int('attn_depth', 2, 14, step=4), heads=[6], # trial.suggest_int('heads', 2, 16, step=2), scheduler=['CosineAnnealingWarmRestarts'], # trial.suggest_categorical('scheduler', [None, 'LambdaLR']), - lr_scheduler_parameter=[25], # [0.98], + lr_scheduler_parameter=[5], # [0.98], embedding_size=[30], # trial.suggest_int('embedding_size', 12, 64, step=12), loss=['ce_loss'], sampler=['WeightedRandomSampler'], diff --git a/util/optimizer_mixin.py b/util/optimizer_mixin.py index dfba45c..e95bc05 100644 --- a/util/optimizer_mixin.py +++ b/util/optimizer_mixin.py @@ -26,7 +26,7 @@ class OptimizerMixin: optimizer_dict.update(optimizer=optimizer) if self.params.scheduler == CosineAnnealingWarmRestarts.__name__: - scheduler = CosineAnnealingWarmRestarts(optimizer, self.params.lr_scheduler_parameter) + scheduler = CosineAnnealingWarmRestarts(optimizer, T_0=self.params.lr_scheduler_parameter) elif self.params.scheduler == LambdaLR.__name__: lr_reduce_ratio = self.params.lr_scheduler_parameter scheduler = LambdaLR(optimizer, lr_lambda=lambda epoch: lr_reduce_ratio ** epoch)