Final Train Runs

This commit is contained in:
Steffen Illium 2021-03-18 21:43:27 +01:00
parent 2c9cb2e94a
commit a018b29979
4 changed files with 8 additions and 7 deletions

View File

@ -15,6 +15,9 @@ sr = 16000
hop_length = 128
n_fft = 256
sample_segment_len=50
sample_hop_len=20
random_apply_chance = 0.7
loudness_ratio = 0.0
shift_ratio = 0.3
@ -27,7 +30,7 @@ activation = gelu
use_bias = True
use_norm = True
use_residual = True
dropout = 0.2
dropout = 0.21
lat_dim = 32
patch_size = 8

View File

@ -37,8 +37,6 @@ def run_lightning_loop(h_params, data_class, model_class, seed=69, additional_ca
# Learning Rate Logger
lr_logger = LearningRateMonitor(logging_interval='epoch')
# Track best scores
score_callback = BestScoresCallback(['PL_recall_score'])

View File

@ -13,13 +13,13 @@ if __name__ == '__main__':
hparams_dict = dict(seed=range(10),
model_name=['VisualTransformer'],
batch_size=[50],
max_epochs=[250],
max_epochs=[200],
random_apply_chance=[0.3], # trial.suggest_float('random_apply_chance', 0.1, 0.5, step=0.1),
loudness_ratio=[0], # trial.suggest_float('loudness_ratio', 0.0, 0.5, step=0.1),
shift_ratio=[0.3], # trial.suggest_float('shift_ratio', 0.0, 0.5, step=0.1),
noise_ratio=[0.3], # trial.suggest_float('noise_ratio', 0.0, 0.5, step=0.1),
mask_ratio=[0.3], # trial.suggest_float('mask_ratio', 0.0, 0.5, step=0.1),
lr=[5e-3], # trial.suggest_uniform('lr', 1e-3, 3e-3),
lr=[2e-3], # trial.suggest_uniform('lr', 1e-3, 3e-3),
dropout=[0.2], # trial.suggest_float('dropout', 0.0, 0.3, step=0.05),
lat_dim=[32], # 2 ** trial.suggest_int('lat_dim', 1, 5, step=1),
mlp_dim=[16], # 2 ** trial.suggest_int('mlp_dim', 1, 5, step=1),
@ -28,7 +28,7 @@ if __name__ == '__main__':
attn_depth=[10], # trial.suggest_int('attn_depth', 2, 14, step=4),
heads=[6], # trial.suggest_int('heads', 2, 16, step=2),
scheduler=['CosineAnnealingWarmRestarts'], # trial.suggest_categorical('scheduler', [None, 'LambdaLR']),
lr_scheduler_parameter=[25], # [0.98],
lr_scheduler_parameter=[5], # [0.98],
embedding_size=[30], # trial.suggest_int('embedding_size', 12, 64, step=12),
loss=['ce_loss'],
sampler=['WeightedRandomSampler'],

View File

@ -26,7 +26,7 @@ class OptimizerMixin:
optimizer_dict.update(optimizer=optimizer)
if self.params.scheduler == CosineAnnealingWarmRestarts.__name__:
scheduler = CosineAnnealingWarmRestarts(optimizer, self.params.lr_scheduler_parameter)
scheduler = CosineAnnealingWarmRestarts(optimizer, T_0=self.params.lr_scheduler_parameter)
elif self.params.scheduler == LambdaLR.__name__:
lr_reduce_ratio = self.params.lr_scheduler_parameter
scheduler = LambdaLR(optimizer, lr_lambda=lambda epoch: lr_reduce_ratio ** epoch)