added structured clustering

This commit is contained in:
Markus Friedrich 2019-08-13 18:46:40 +02:00
parent 557d49fefc
commit 07043bd39b
5 changed files with 74718 additions and 127 deletions

1
.gitignore vendored
View File

@ -130,5 +130,4 @@ dmypy.json
/vis/data/ /vis/data/
/vis/checkpoint /vis/checkpoint
/predict/data/ /predict/data/
/predict/checkpoint/

View File

@ -207,7 +207,7 @@ def write_clusters(path, clusters, type_column=6):
print("Types: ", types) print("Types: ", types)
np.savetxt(file, types, header='', comments='', fmt='%i') np.savetxt(file, types.reshape(1, types.shape[0]),delimiter=';', header='', comments='', fmt='%i')
np.savetxt(file, cluster[:, :6], header=str(len(cluster)) + ' ' + str(6), comments='') np.savetxt(file, cluster[:, :6], header=str(len(cluster)) + ' ' + str(6), comments='')
@ -260,7 +260,7 @@ def filter_clusters(clusters, filter):
def split_outliers(pc, columns): def split_outliers(pc, columns):
clf = KNN()#FeatureBagging() # detector_list=[LOF(), KNN()] clf = LOF()# FeatureBagging() # detector_list=[LOF(), KNN()]
clf.fit(pc[:, columns]) clf.fit(pc[:, columns])
# LOF, kNN # LOF, kNN

Binary file not shown.

74591
predict/pointclouds/m3.xyz Normal file

File diff suppressed because it is too large Load Diff

View File

@ -62,8 +62,8 @@ def recreate_folder(folder):
sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/../') # add project root directory sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/../') # add project root directory
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument('--npoints', type=int, default=4096, help='resample points number') parser.add_argument('--npoints', type=int, default=2048, help='resample points number')
parser.add_argument('--model', type=str, default='./checkpoint/seg_model_custom_28.pth', help='model path') parser.add_argument('--model', type=str, default='./checkpoint/seg_model_custom_131.pth', help='model path')
parser.add_argument('--sample_idx', type=int, default=0, help='select a sample to segment and view result') parser.add_argument('--sample_idx', type=int, default=0, help='select a sample to segment and view result')
parser.add_argument('--headers', type=strtobool, default=True, help='if raw files come with headers') parser.add_argument('--headers', type=strtobool, default=True, help='if raw files come with headers')
parser.add_argument('--with_normals', type=strtobool, default=True, help='if training will include normals') parser.add_argument('--with_normals', type=strtobool, default=True, help='if training will include normals')
@ -76,131 +76,132 @@ print(opt)
if __name__ == '__main__': if __name__ == '__main__':
# # ------------------------------------------------------------------------------------------------------------------ # ------------------------------------------------------------------------------------------------------------------
# # Load point cloud, cluster it and store clusters as point cloud clusters again for later prediction # Load point cloud, cluster it and store clusters as point cloud cluster files again for later prediction
# # ------------------------------------------------------------------------------------------------------------------ # ------------------------------------------------------------------------------------------------------------------
#
# # Create dataset # Create dataset
# print('Create data set ..') print('Create data set ..')
#
# dataset_folder = './data/raw/predict/' dataset_folder = './data/raw/predict/'
# pointcloud_file = './pointclouds/m3.xyz' pointcloud_file = './pointclouds/m3.xyz'
#
# # Load and pre-process point cloud # Load and pre-process point cloud
# pcloud = pc.read_pointcloud(pointcloud_file) pcloud = pc.read_pointcloud(pointcloud_file)
# pcloud = pc.normalize_pointcloud(pcloud, 1) pcloud = pc.normalize_pointcloud(pcloud, 1)
#
# #pc_clusters = pc.hierarchical_clustering(pcloud, selected_indices_0=[0, 1, 2, 3, 4, 5], #pc_clusters = pc.hierarchical_clustering(pcloud, selected_indices_0=[0, 1, 2, 3, 4, 5],
# # selected_indices_1=[0, 1, 2, 3, 4, 5], eps=0.7, min_samples=5) # selected_indices_1=[0, 1, 2, 3, 4, 5], eps=0.7, min_samples=5)
#
# pc_clusters = pc.cluster_cubes(pcloud, [4, 4, 4]) pc_clusters = pc.cluster_cubes(pcloud, [4, 4, 4])
# print("Pre-Processing: Clustering") print("Pre-Processing: Clustering")
# pc.draw_clusters(pc_clusters) pc.draw_clusters(pc_clusters)
#
# recreate_folder(dataset_folder) recreate_folder(dataset_folder)
# for idx, pcc in enumerate(pc_clusters): for idx, pcc in enumerate(pc_clusters):
# pcc = pc.farthest_point_sampling(pcc, opt.npoints)
# pcc = pc.farthest_point_sampling(pcc, opt.npoints) recreate_folder(dataset_folder + str(idx) + '/')
# recreate_folder(dataset_folder + str(idx) + '/') pc.write_pointcloud(dataset_folder + str(idx) + '/pc.xyz', pcc)
# pc.write_pointcloud(dataset_folder + str(idx) + '/pc.xyz', pcc) #draw_sample_data(pcc, True)
# #draw_sample_data(pcc, True)
# # ------------------------------------------------------------------------------------------------------------------
# # ------------------------------------------------------------------------------------------------------------------ # Load point cloud clusters and model.
# # Load point cloud clusters and model. # ------------------------------------------------------------------------------------------------------------------
# # ------------------------------------------------------------------------------------------------------------------
# # Load dataset
# # Load dataset print('load dataset ..')
# print('load dataset ..') test_transform = GT.Compose([GT.NormalizeScale(), ])
# test_transform = GT.Compose([GT.NormalizeScale(), ])
# test_dataset = ShapeNetPartSegDataset(
# test_dataset = ShapeNetPartSegDataset( mode='predict',
# mode='predict', root_dir='data',
# root_dir='data', with_normals=opt.with_normals,
# with_normals=opt.with_normals, npoints=opt.npoints,
# npoints=opt.npoints, refresh=True,
# refresh=True, collate_per_segment=opt.collate_per_segment,
# collate_per_segment=opt.collate_per_segment, has_variations=opt.has_variations,
# has_variations=opt.has_variations, headers=opt.headers
# headers=opt.headers )
# ) num_classes = test_dataset.num_classes()
# num_classes = test_dataset.num_classes()
# # Load model
# # Load model print('Construct model ..')
# print('Construct model ..') device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
# device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') dtype = torch.float
# dtype = torch.float
# net = PointNet2PartSegmentNet(num_classes, with_normals=opt.with_normals)
# net = PointNet2PartSegmentNet(num_classes, with_normals=opt.with_normals) net.load_state_dict(torch.load(opt.model, map_location=device.type))
# net.load_state_dict(torch.load(opt.model, map_location=device.type)) net = net.to(device, dtype)
# net = net.to(device, dtype) net.eval()
# net.eval()
# # ------------------------------------------------------------------------------------------------------------------
# # ------------------------------------------------------------------------------------------------------------------ # Predict per cluster.
# # Predict per cluster. # ------------------------------------------------------------------------------------------------------------------
# # ------------------------------------------------------------------------------------------------------------------
# labeled_dataset = None
# labeled_dataset = None result_clusters = []
# result_clusters = []
# # Iterate over all the samples and predict
# # Iterate over all the samples and predict for idx, sample in enumerate(test_dataset):
# for idx, sample in enumerate(test_dataset):
# predicted_label, _ = eval_sample(net, sample)
# predicted_label, _ = eval_sample(net, sample) if opt.with_normals:
# if opt.with_normals: sample_data = np.column_stack((sample["points"].numpy(), predicted_label.numpy()))
# sample_data = np.column_stack((sample["points"].numpy(), predicted_label.numpy())) else:
# else: sample_data = np.column_stack((sample["points"].numpy(), sample["normals"], predicted_label.numpy()))
# sample_data = np.column_stack((sample["points"].numpy(), sample["normals"], predicted_label.numpy()))
# result_clusters.append(sample_data)
# result_clusters.append(sample_data)
# if labeled_dataset is None:
# if labeled_dataset is None: labeled_dataset = sample_data
# labeled_dataset = sample_data else:
# else: labeled_dataset = np.vstack((labeled_dataset, sample_data))
# labeled_dataset = np.vstack((labeled_dataset, sample_data))
# print("Prediction done for cluster " + str(idx+1) + "/" + str(len(test_dataset)))
# print("Prediction done for cluster " + str(idx+1) + "/" + str(len(test_dataset)))
# # ------------------------------------------------------------------------------------------------------------------
# # ------------------------------------------------------------------------------------------------------------------ # Remove cluster rows if the amount of points for a particular primitive type is below a threshold.
# # Remove cluster rows if the amount of points for a particular primitive type is below a threshold. # ------------------------------------------------------------------------------------------------------------------
# # ------------------------------------------------------------------------------------------------------------------
# min_cluster_size = 10
# min_cluster_size = 10 contamination = 0.01
# contamination = 0.01
# filtered_clusters = filter(lambda c : c.shape[0] > min_cluster_size, result_clusters)
# filtered_clusters = filter(lambda c : c.shape[0] > min_cluster_size, result_clusters) type_filtered_clusters = []
# type_filtered_clusters = [] for c in filtered_clusters:
# for c in filtered_clusters:
# prim_types = np.unique(c[:, 6])
# prim_types = np.unique(c[:, 6]) pt_count = {}
# pt_count = {} for pt in prim_types:
# for pt in prim_types: pt_count[pt] = len(c[c[:, 6] == pt])
# pt_count[pt] = len(c[c[:, 6] == pt])
# max_pt = max(pt_count.items(), key=operator.itemgetter(1))[0]
# max_pt = max(pt_count.items(), key=operator.itemgetter(1))[0] min_size = pt_count[max_pt] * contamination
# min_size = pt_count[max_pt] * contamination
# valid_types = []
# valid_types = [] for pt in prim_types:
# for pt in prim_types: if pt_count[pt] > min_size:
# if pt_count[pt] > min_size: valid_types.append(pt)
# valid_types.append(pt)
# filtered_c = c[np.isin(c[:, 6], valid_types)]
# filtered_c = c[np.isin(c[:, 6], valid_types)] type_filtered_clusters.append(filtered_c)
# type_filtered_clusters.append(filtered_c)
# result_clusters = type_filtered_clusters result_clusters = type_filtered_clusters
#
# labeled_dataset = np.vstack(result_clusters) labeled_dataset = np.vstack(result_clusters)
#
# np.savetxt('labeled_dataset.txt', labeled_dataset) np.savetxt('labeled_dataset.txt', labeled_dataset)
# ------------------------------------------------------------------------------------------------------------------ # ------------------------------------------------------------------------------------------------------------------
# Clustering that results in per-primitive type clusters # Clustering that results in per-primitive type clusters
# ------------------------------------------------------------------------------------------------------------------ # ------------------------------------------------------------------------------------------------------------------
labeled_dataset = np.loadtxt('labeled_dataset.txt') # labeled_dataset = np.loadtxt('labeled_dataset.txt')
# pc.draw_sample_data(labeled_dataset) pc.draw_sample_data(labeled_dataset)
# Try to get rid of outliers.
# TODO: Filter labeled dataset to get rid of edge clusters labeled_dataset,outliers = pc.split_outliers(labeled_dataset, columns=[0,1,2,3,4,5])
pc.draw_sample_data(outliers, False)
print("Final clustering..") print("Final clustering..")
@ -210,7 +211,7 @@ if __name__ == '__main__':
total_clusters = [] total_clusters = []
clusters = pc.cluster_dbscan(labeled_dataset, [0,1,2,3,4,5], eps=0.1, min_samples=50) clusters = pc.cluster_dbscan(labeled_dataset, [0,1,2,3,4,5], eps=0.1, min_samples=100)
print("Pre-clustering done. Clusters: ", len(clusters)) print("Pre-clustering done. Clusters: ", len(clusters))
pc.draw_clusters(clusters) pc.draw_clusters(clusters)
@ -224,7 +225,7 @@ if __name__ == '__main__':
print("No need for 2nd level clustering since there is only a single primitive type in the cluster.") print("No need for 2nd level clustering since there is only a single primitive type in the cluster.")
total_clusters.append(cluster) total_clusters.append(cluster)
else: else:
sub_clusters = pc.cluster_dbscan(cluster, [0,1,2,7,8,9,10], eps=0.1, min_samples=50) sub_clusters = pc.cluster_dbscan(cluster, [0,1,2,7,8,9,10], eps=0.1, min_samples=100)
print("Sub clusters: ", len(sub_clusters)) print("Sub clusters: ", len(sub_clusters))
total_clusters.extend(sub_clusters) total_clusters.extend(sub_clusters)
@ -233,7 +234,7 @@ if __name__ == '__main__':
for cluster in result_clusters: for cluster in result_clusters:
print("Cluster: ", cluster.shape[0]) print("Cluster: ", cluster.shape[0])
pc.draw_sample_data(cluster, False) # pc.draw_sample_data(cluster, False)
print("Number of clusters: ", len(result_clusters)) print("Number of clusters: ", len(result_clusters))