2019-08-13 18:46:40 +02:00

246 lines
9.3 KiB
Python

import sys
import os
import shutil
import math
from dataset.shapenet import ShapeNetPartSegDataset
from model.pointnet2_part_seg import PointNet2PartSegmentNet
import torch_geometric.transforms as GT
import torch
import argparse
from distutils.util import strtobool
import numpy as np
import pointcloud as pc
import operator
sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/../') # add project root directory
def eval_sample(net, sample):
'''
sample: { 'points': tensor(n, 3), 'labels': tensor(n,) }
return: (pred_label, gt_label) with labels shape (n,)
'''
net.eval()
with torch.no_grad():
# points: (n, 3)
points, gt_label = sample['points'], sample['labels']
n = points.shape[0]
f = points.shape[1]
points = points.view(1, n, f) # make a batch
points = points.transpose(1, 2).contiguous()
points = points.to(device, dtype)
pred = net(points) # (batch_size, n, num_classes)
pred_label = pred.max(2)[1]
pred_label = pred_label.view(-1).cpu() # (n,)
assert pred_label.shape == gt_label.shape
return (pred_label, gt_label)
def append_normal_angles(data):
def func(x):
theta = math.acos(x[2]) / math.pi
phi = (math.atan2(x[1], x[0]) + math.pi) / (2.0 * math.pi)
return (theta, phi)
res = np.array([func(xi) for xi in data[:, 3:6]])
print(res)
return np.column_stack((data, res))
def recreate_folder(folder):
if os.path.exists(folder) and os.path.isdir(folder):
shutil.rmtree(folder)
os.mkdir(folder)
sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/../') # add project root directory
parser = argparse.ArgumentParser()
parser.add_argument('--npoints', type=int, default=2048, help='resample points number')
parser.add_argument('--model', type=str, default='./checkpoint/seg_model_custom_131.pth', help='model path')
parser.add_argument('--sample_idx', type=int, default=0, help='select a sample to segment and view result')
parser.add_argument('--headers', type=strtobool, default=True, help='if raw files come with headers')
parser.add_argument('--with_normals', type=strtobool, default=True, help='if training will include normals')
parser.add_argument('--collate_per_segment', type=strtobool, default=True, help='whether to look at pointclouds or sub')
parser.add_argument('--has_variations', type=strtobool, default=False,
help='whether a single pointcloud has variations '
'named int(id)_pc.(xyz|dat) look at pointclouds or sub')
opt = parser.parse_args()
print(opt)
if __name__ == '__main__':
# ------------------------------------------------------------------------------------------------------------------
# Load point cloud, cluster it and store clusters as point cloud cluster files again for later prediction
# ------------------------------------------------------------------------------------------------------------------
# Create dataset
print('Create data set ..')
dataset_folder = './data/raw/predict/'
pointcloud_file = './pointclouds/m3.xyz'
# Load and pre-process point cloud
pcloud = pc.read_pointcloud(pointcloud_file)
pcloud = pc.normalize_pointcloud(pcloud, 1)
#pc_clusters = pc.hierarchical_clustering(pcloud, selected_indices_0=[0, 1, 2, 3, 4, 5],
# selected_indices_1=[0, 1, 2, 3, 4, 5], eps=0.7, min_samples=5)
pc_clusters = pc.cluster_cubes(pcloud, [4, 4, 4])
print("Pre-Processing: Clustering")
pc.draw_clusters(pc_clusters)
recreate_folder(dataset_folder)
for idx, pcc in enumerate(pc_clusters):
pcc = pc.farthest_point_sampling(pcc, opt.npoints)
recreate_folder(dataset_folder + str(idx) + '/')
pc.write_pointcloud(dataset_folder + str(idx) + '/pc.xyz', pcc)
#draw_sample_data(pcc, True)
# ------------------------------------------------------------------------------------------------------------------
# Load point cloud clusters and model.
# ------------------------------------------------------------------------------------------------------------------
# Load dataset
print('load dataset ..')
test_transform = GT.Compose([GT.NormalizeScale(), ])
test_dataset = ShapeNetPartSegDataset(
mode='predict',
root_dir='data',
with_normals=opt.with_normals,
npoints=opt.npoints,
refresh=True,
collate_per_segment=opt.collate_per_segment,
has_variations=opt.has_variations,
headers=opt.headers
)
num_classes = test_dataset.num_classes()
# Load model
print('Construct model ..')
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
dtype = torch.float
net = PointNet2PartSegmentNet(num_classes, with_normals=opt.with_normals)
net.load_state_dict(torch.load(opt.model, map_location=device.type))
net = net.to(device, dtype)
net.eval()
# ------------------------------------------------------------------------------------------------------------------
# Predict per cluster.
# ------------------------------------------------------------------------------------------------------------------
labeled_dataset = None
result_clusters = []
# Iterate over all the samples and predict
for idx, sample in enumerate(test_dataset):
predicted_label, _ = eval_sample(net, sample)
if opt.with_normals:
sample_data = np.column_stack((sample["points"].numpy(), predicted_label.numpy()))
else:
sample_data = np.column_stack((sample["points"].numpy(), sample["normals"], predicted_label.numpy()))
result_clusters.append(sample_data)
if labeled_dataset is None:
labeled_dataset = sample_data
else:
labeled_dataset = np.vstack((labeled_dataset, sample_data))
print("Prediction done for cluster " + str(idx+1) + "/" + str(len(test_dataset)))
# ------------------------------------------------------------------------------------------------------------------
# Remove cluster rows if the amount of points for a particular primitive type is below a threshold.
# ------------------------------------------------------------------------------------------------------------------
min_cluster_size = 10
contamination = 0.01
filtered_clusters = filter(lambda c : c.shape[0] > min_cluster_size, result_clusters)
type_filtered_clusters = []
for c in filtered_clusters:
prim_types = np.unique(c[:, 6])
pt_count = {}
for pt in prim_types:
pt_count[pt] = len(c[c[:, 6] == pt])
max_pt = max(pt_count.items(), key=operator.itemgetter(1))[0]
min_size = pt_count[max_pt] * contamination
valid_types = []
for pt in prim_types:
if pt_count[pt] > min_size:
valid_types.append(pt)
filtered_c = c[np.isin(c[:, 6], valid_types)]
type_filtered_clusters.append(filtered_c)
result_clusters = type_filtered_clusters
labeled_dataset = np.vstack(result_clusters)
np.savetxt('labeled_dataset.txt', labeled_dataset)
# ------------------------------------------------------------------------------------------------------------------
# Clustering that results in per-primitive type clusters
# ------------------------------------------------------------------------------------------------------------------
# labeled_dataset = np.loadtxt('labeled_dataset.txt')
pc.draw_sample_data(labeled_dataset)
# Try to get rid of outliers.
labeled_dataset,outliers = pc.split_outliers(labeled_dataset, columns=[0,1,2,3,4,5])
pc.draw_sample_data(outliers, False)
print("Final clustering..")
labeled_dataset = pc.append_onehotencoded_type(labeled_dataset)
print("Test row: ", labeled_dataset[:1, :])
total_clusters = []
clusters = pc.cluster_dbscan(labeled_dataset, [0,1,2,3,4,5], eps=0.1, min_samples=100)
print("Pre-clustering done. Clusters: ", len(clusters))
pc.draw_clusters(clusters)
for cluster in clusters:
#cluster = pc.normalize_pointcloud(cluster)
print("2nd level clustering ..")
prim_types_in_cluster = len(np.unique(cluster[:, 6], axis=0))
if prim_types_in_cluster == 1:
print("No need for 2nd level clustering since there is only a single primitive type in the cluster.")
total_clusters.append(cluster)
else:
sub_clusters = pc.cluster_dbscan(cluster, [0,1,2,7,8,9,10], eps=0.1, min_samples=100)
print("Sub clusters: ", len(sub_clusters))
total_clusters.extend(sub_clusters)
result_clusters = list(filter(lambda c: c.shape[0] > 100, total_clusters))
for cluster in result_clusters:
print("Cluster: ", cluster.shape[0])
# pc.draw_sample_data(cluster, False)
print("Number of clusters: ", len(result_clusters))
pc.draw_clusters(result_clusters)
# ------------------------------------------------------------------------------------------------------------------
# Write clusters to file.
# ------------------------------------------------------------------------------------------------------------------
pc.write_clusters("clusters.txt", result_clusters)