added structured clustering
This commit is contained in:
parent
e4cc447f68
commit
557d49fefc
@ -37,7 +37,7 @@ def mini_color_table(index, norm=True):
|
||||
return color
|
||||
|
||||
|
||||
def clusterToColor(cluster, cluster_idx):
|
||||
def cluster2Color(cluster, cluster_idx):
|
||||
|
||||
colors = np.zeros(shape=(len(cluster), 3))
|
||||
point_idx = 0
|
||||
@ -48,6 +48,21 @@ def clusterToColor(cluster, cluster_idx):
|
||||
return colors
|
||||
|
||||
|
||||
def label2color(labels):
|
||||
'''
|
||||
labels: np.ndarray with shape (n, )
|
||||
colors(return): np.ndarray with shape (n, 3)
|
||||
'''
|
||||
num = labels.shape[0]
|
||||
colors = np.zeros((num, 3))
|
||||
|
||||
minl, maxl = np.min(labels), np.max(labels)
|
||||
for l in range(minl, maxl + 1):
|
||||
colors[labels == l, :] = mini_color_table(l)
|
||||
|
||||
return colors
|
||||
|
||||
|
||||
def read_pointcloud(path, delimiter=' ', hasHeader=True):
|
||||
with open(path, 'r') as f:
|
||||
if hasHeader:
|
||||
@ -174,7 +189,7 @@ def draw_clusters(clusters):
|
||||
|
||||
cloud = o3d.PointCloud()
|
||||
cloud.points = o3d.Vector3dVector(cluster[:,:3])
|
||||
cloud.colors = o3d.Vector3dVector(clusterToColor(cluster, cluster_idx))
|
||||
cloud.colors = o3d.Vector3dVector(cluster2Color(cluster, cluster_idx))
|
||||
clouds.append(cloud)
|
||||
|
||||
o3d.draw_geometries(clouds)
|
||||
@ -186,14 +201,26 @@ def write_clusters(path, clusters, type_column=6):
|
||||
file.write(str(len(clusters)) + "\n")
|
||||
|
||||
for cluster in clusters:
|
||||
print("Types: ", cluster[:, type_column])
|
||||
# print("Types: ", cluster[:, type_column])
|
||||
|
||||
types = np.unique(cluster[:, type_column], axis=0)
|
||||
types = np.unique(cluster[:, type_column], axis=0).astype(int)
|
||||
|
||||
np.savetxt(file, types, header='', comments='')
|
||||
print("Types: ", types)
|
||||
|
||||
np.savetxt(file, types, header='', comments='', fmt='%i')
|
||||
np.savetxt(file, cluster[:, :6], header=str(len(cluster)) + ' ' + str(6), comments='')
|
||||
|
||||
|
||||
def draw_sample_data(sample_data, colored_normals = False):
|
||||
|
||||
cloud = o3d.PointCloud()
|
||||
cloud.points = o3d.Vector3dVector(sample_data[:, :3])
|
||||
cloud.colors = \
|
||||
o3d.Vector3dVector(label2color(sample_data[:, 6].astype(int)) if not colored_normals else sample_data[:, 3:6])
|
||||
|
||||
o3d.draw_geometries([cloud])
|
||||
|
||||
|
||||
def normalize_pointcloud(pc, factor=1.0):
|
||||
|
||||
max = pc.max(axis=0)
|
||||
@ -221,12 +248,12 @@ def hierarchical_clustering(data, selected_indices_0, selected_indices_1, eps, m
|
||||
return total_clusters
|
||||
|
||||
|
||||
def filter_clusters(clusters, min_size):
|
||||
def filter_clusters(clusters, filter):
|
||||
|
||||
filtered_clusters = []
|
||||
|
||||
for c in clusters:
|
||||
if len(c) >= min_size:
|
||||
if filter(c):
|
||||
filtered_clusters.append(c)
|
||||
|
||||
return filtered_clusters
|
||||
@ -238,4 +265,13 @@ def split_outliers(pc, columns):
|
||||
|
||||
# LOF, kNN
|
||||
|
||||
return pc[clf.labels_ == 0], pc[clf.labels_ == 1]
|
||||
return pc[clf.labels_ == 0], pc[clf.labels_ == 1]
|
||||
|
||||
|
||||
def append_onehotencoded_type(data, factor = 1.0):
|
||||
|
||||
types = data[:, 6].astype(int)
|
||||
res = np.zeros((len(types), 4))
|
||||
res[np.arange(len(types)), types] = factor
|
||||
|
||||
return np.column_stack((data, res))
|
||||
|
@ -2,21 +2,19 @@ import sys
|
||||
import os
|
||||
import shutil
|
||||
import math
|
||||
|
||||
sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/../') # add project root directory
|
||||
|
||||
from dataset.shapenet import ShapeNetPartSegDataset
|
||||
from model.pointnet2_part_seg import PointNet2PartSegmentNet
|
||||
import torch_geometric.transforms as GT
|
||||
import torch
|
||||
import argparse
|
||||
from distutils.util import strtobool
|
||||
|
||||
import numpy as np
|
||||
from sklearn.cluster import DBSCAN
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
import open3d as o3d
|
||||
import pointcloud as pc
|
||||
import operator
|
||||
|
||||
|
||||
sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/../') # add project root directory
|
||||
|
||||
|
||||
def eval_sample(net, sample):
|
||||
'''
|
||||
@ -42,78 +40,6 @@ def eval_sample(net, sample):
|
||||
return (pred_label, gt_label)
|
||||
|
||||
|
||||
def mini_color_table(index, norm=True):
|
||||
colors = [
|
||||
[0.5000, 0.5400, 0.5300], [0.8900, 0.1500, 0.2100], [0.6400, 0.5800, 0.5000],
|
||||
[1.0000, 0.3800, 0.0100], [1.0000, 0.6600, 0.1400], [0.4980, 1.0000, 0.0000],
|
||||
[0.4980, 1.0000, 0.8314], [0.9412, 0.9725, 1.0000], [0.5412, 0.1686, 0.8863],
|
||||
[0.5765, 0.4392, 0.8588], [0.3600, 0.1400, 0.4300], [0.5600, 0.3700, 0.6000],
|
||||
]
|
||||
|
||||
color = colors[index % len(colors)]
|
||||
|
||||
if not norm:
|
||||
color[0] *= 255
|
||||
color[1] *= 255
|
||||
color[2] *= 255
|
||||
|
||||
return color
|
||||
|
||||
|
||||
def label2color(labels):
|
||||
'''
|
||||
labels: np.ndarray with shape (n, )
|
||||
colors(return): np.ndarray with shape (n, 3)
|
||||
'''
|
||||
num = labels.shape[0]
|
||||
colors = np.zeros((num, 3))
|
||||
|
||||
minl, maxl = np.min(labels), np.max(labels)
|
||||
for l in range(minl, maxl + 1):
|
||||
colors[labels == l, :] = mini_color_table(l)
|
||||
|
||||
return colors
|
||||
|
||||
|
||||
def clusterToColor(cluster, cluster_idx):
|
||||
|
||||
colors = np.zeros(shape=(len(cluster), 3))
|
||||
point_idx = 0
|
||||
for point in cluster:
|
||||
colors[point_idx, :] = mini_color_table(cluster_idx)
|
||||
point_idx += 1
|
||||
|
||||
return colors
|
||||
|
||||
|
||||
|
||||
def farthest_point_sampling(pts, K):
|
||||
|
||||
if pts.shape[0] < K:
|
||||
return pts
|
||||
|
||||
def calc_distances(p0, points):
|
||||
return ((p0[:3] - points[:, :3]) ** 2).sum(axis=1)
|
||||
|
||||
farthest_pts = np.zeros((K, pts.shape[1]))
|
||||
farthest_pts[0] = pts[np.random.randint(len(pts))]
|
||||
distances = calc_distances(farthest_pts[0], pts)
|
||||
for i in range(1, K):
|
||||
farthest_pts[i] = pts[np.argmax(distances)]
|
||||
distances = np.minimum(distances, calc_distances(farthest_pts[i], pts))
|
||||
|
||||
return farthest_pts
|
||||
|
||||
|
||||
def append_onehotencoded_type(data, factor = 1.0):
|
||||
|
||||
types = data[:, 6].astype(int)
|
||||
res = np.zeros((len(types), 4))
|
||||
res[np.arange(len(types)), types] = factor
|
||||
|
||||
return np.column_stack((data, res))
|
||||
|
||||
|
||||
def append_normal_angles(data):
|
||||
|
||||
def func(x):
|
||||
@ -128,64 +54,6 @@ def append_normal_angles(data):
|
||||
return np.column_stack((data, res))
|
||||
|
||||
|
||||
def extract_clusters(data, selected_indices, eps, min_samples, metric='euclidean', algo='auto'):
|
||||
|
||||
min_samples = min_samples * len(data)
|
||||
|
||||
print('Clustering. Min Samples: ' + str(min_samples) + ' EPS: ' + str(eps))
|
||||
|
||||
# 0,1,2 : pos
|
||||
# 3,4,5 : normal
|
||||
# 6: type index
|
||||
# 7,8,9,10: type index one hot encoded
|
||||
# 11,12: normal as angles
|
||||
|
||||
db_res = DBSCAN(eps=eps, metric=metric, n_jobs=-1, algorithm=algo, min_samples=min_samples).fit(data[:, selected_indices])
|
||||
|
||||
labels = db_res.labels_
|
||||
n_clusters = len(set(labels)) - (1 if -1 in labels else 0)
|
||||
n_noise = list(labels).count(-1)
|
||||
print("Noise: " + str(n_noise) + " Clusters: " + str(n_clusters))
|
||||
|
||||
clusters = {}
|
||||
for idx, l in enumerate(labels):
|
||||
if l is -1:
|
||||
continue
|
||||
clusters.setdefault(str(l), []).append(data[idx, :])
|
||||
|
||||
npClusters = []
|
||||
for cluster in clusters.values():
|
||||
npClusters.append(np.array(cluster))
|
||||
|
||||
return npClusters
|
||||
|
||||
|
||||
def draw_clusters(clusters):
|
||||
|
||||
clouds = []
|
||||
|
||||
cluster_idx = 0
|
||||
for cluster in clusters:
|
||||
|
||||
cloud = o3d.PointCloud()
|
||||
cloud.points = o3d.Vector3dVector(cluster[:,:3])
|
||||
cloud.colors = o3d.Vector3dVector(clusterToColor(cluster, cluster_idx))
|
||||
clouds.append(cloud)
|
||||
cluster_idx += 1
|
||||
|
||||
o3d.draw_geometries(clouds)
|
||||
|
||||
|
||||
def draw_sample_data(sample_data, colored_normals = False):
|
||||
|
||||
cloud = o3d.PointCloud()
|
||||
cloud.points = o3d.Vector3dVector(sample_data[:, :3])
|
||||
cloud.colors = \
|
||||
o3d.Vector3dVector(label2color(sample_data[:, 6].astype(int)) if not colored_normals else sample_data[:, 3:6])
|
||||
|
||||
o3d.draw_geometries([cloud])
|
||||
|
||||
|
||||
def recreate_folder(folder):
|
||||
if os.path.exists(folder) and os.path.isdir(folder):
|
||||
shutil.rmtree(folder)
|
||||
@ -194,8 +62,8 @@ def recreate_folder(folder):
|
||||
sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/../') # add project root directory
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--npoints', type=int, default=2048, help='resample points number')
|
||||
parser.add_argument('--model', type=str, default='./checkpoint/seg_model_custom_3.pth', help='model path')
|
||||
parser.add_argument('--npoints', type=int, default=4096, help='resample points number')
|
||||
parser.add_argument('--model', type=str, default='./checkpoint/seg_model_custom_28.pth', help='model path')
|
||||
parser.add_argument('--sample_idx', type=int, default=0, help='select a sample to segment and view result')
|
||||
parser.add_argument('--headers', type=strtobool, default=True, help='if raw files come with headers')
|
||||
parser.add_argument('--with_normals', type=strtobool, default=True, help='if training will include normals')
|
||||
@ -203,139 +71,175 @@ parser.add_argument('--collate_per_segment', type=strtobool, default=True, help=
|
||||
parser.add_argument('--has_variations', type=strtobool, default=False,
|
||||
help='whether a single pointcloud has variations '
|
||||
'named int(id)_pc.(xyz|dat) look at pointclouds or sub')
|
||||
|
||||
opt = parser.parse_args()
|
||||
print(opt)
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# Create dataset
|
||||
print('Create data set ..')
|
||||
# # ------------------------------------------------------------------------------------------------------------------
|
||||
# # Load point cloud, cluster it and store clusters as point cloud clusters again for later prediction
|
||||
# # ------------------------------------------------------------------------------------------------------------------
|
||||
#
|
||||
# # Create dataset
|
||||
# print('Create data set ..')
|
||||
#
|
||||
# dataset_folder = './data/raw/predict/'
|
||||
# pointcloud_file = './pointclouds/m3.xyz'
|
||||
#
|
||||
# # Load and pre-process point cloud
|
||||
# pcloud = pc.read_pointcloud(pointcloud_file)
|
||||
# pcloud = pc.normalize_pointcloud(pcloud, 1)
|
||||
#
|
||||
# #pc_clusters = pc.hierarchical_clustering(pcloud, selected_indices_0=[0, 1, 2, 3, 4, 5],
|
||||
# # selected_indices_1=[0, 1, 2, 3, 4, 5], eps=0.7, min_samples=5)
|
||||
#
|
||||
# pc_clusters = pc.cluster_cubes(pcloud, [4, 4, 4])
|
||||
# print("Pre-Processing: Clustering")
|
||||
# pc.draw_clusters(pc_clusters)
|
||||
#
|
||||
# recreate_folder(dataset_folder)
|
||||
# for idx, pcc in enumerate(pc_clusters):
|
||||
#
|
||||
# pcc = pc.farthest_point_sampling(pcc, opt.npoints)
|
||||
# recreate_folder(dataset_folder + str(idx) + '/')
|
||||
# pc.write_pointcloud(dataset_folder + str(idx) + '/pc.xyz', pcc)
|
||||
# #draw_sample_data(pcc, True)
|
||||
#
|
||||
# # ------------------------------------------------------------------------------------------------------------------
|
||||
# # Load point cloud clusters and model.
|
||||
# # ------------------------------------------------------------------------------------------------------------------
|
||||
#
|
||||
# # Load dataset
|
||||
# print('load dataset ..')
|
||||
# test_transform = GT.Compose([GT.NormalizeScale(), ])
|
||||
#
|
||||
# test_dataset = ShapeNetPartSegDataset(
|
||||
# mode='predict',
|
||||
# root_dir='data',
|
||||
# with_normals=opt.with_normals,
|
||||
# npoints=opt.npoints,
|
||||
# refresh=True,
|
||||
# collate_per_segment=opt.collate_per_segment,
|
||||
# has_variations=opt.has_variations,
|
||||
# headers=opt.headers
|
||||
# )
|
||||
# num_classes = test_dataset.num_classes()
|
||||
#
|
||||
# # Load model
|
||||
# print('Construct model ..')
|
||||
# device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
||||
# dtype = torch.float
|
||||
#
|
||||
# net = PointNet2PartSegmentNet(num_classes, with_normals=opt.with_normals)
|
||||
# net.load_state_dict(torch.load(opt.model, map_location=device.type))
|
||||
# net = net.to(device, dtype)
|
||||
# net.eval()
|
||||
#
|
||||
# # ------------------------------------------------------------------------------------------------------------------
|
||||
# # Predict per cluster.
|
||||
# # ------------------------------------------------------------------------------------------------------------------
|
||||
#
|
||||
# labeled_dataset = None
|
||||
# result_clusters = []
|
||||
#
|
||||
# # Iterate over all the samples and predict
|
||||
# for idx, sample in enumerate(test_dataset):
|
||||
#
|
||||
# predicted_label, _ = eval_sample(net, sample)
|
||||
# if opt.with_normals:
|
||||
# sample_data = np.column_stack((sample["points"].numpy(), predicted_label.numpy()))
|
||||
# else:
|
||||
# sample_data = np.column_stack((sample["points"].numpy(), sample["normals"], predicted_label.numpy()))
|
||||
#
|
||||
# result_clusters.append(sample_data)
|
||||
#
|
||||
# if labeled_dataset is None:
|
||||
# labeled_dataset = sample_data
|
||||
# else:
|
||||
# labeled_dataset = np.vstack((labeled_dataset, sample_data))
|
||||
#
|
||||
# print("Prediction done for cluster " + str(idx+1) + "/" + str(len(test_dataset)))
|
||||
#
|
||||
# # ------------------------------------------------------------------------------------------------------------------
|
||||
# # Remove cluster rows if the amount of points for a particular primitive type is below a threshold.
|
||||
# # ------------------------------------------------------------------------------------------------------------------
|
||||
#
|
||||
# min_cluster_size = 10
|
||||
# contamination = 0.01
|
||||
#
|
||||
# filtered_clusters = filter(lambda c : c.shape[0] > min_cluster_size, result_clusters)
|
||||
# type_filtered_clusters = []
|
||||
# for c in filtered_clusters:
|
||||
#
|
||||
# prim_types = np.unique(c[:, 6])
|
||||
# pt_count = {}
|
||||
# for pt in prim_types:
|
||||
# pt_count[pt] = len(c[c[:, 6] == pt])
|
||||
#
|
||||
# max_pt = max(pt_count.items(), key=operator.itemgetter(1))[0]
|
||||
# min_size = pt_count[max_pt] * contamination
|
||||
#
|
||||
# valid_types = []
|
||||
# for pt in prim_types:
|
||||
# if pt_count[pt] > min_size:
|
||||
# valid_types.append(pt)
|
||||
#
|
||||
# filtered_c = c[np.isin(c[:, 6], valid_types)]
|
||||
# type_filtered_clusters.append(filtered_c)
|
||||
# result_clusters = type_filtered_clusters
|
||||
#
|
||||
# labeled_dataset = np.vstack(result_clusters)
|
||||
#
|
||||
# np.savetxt('labeled_dataset.txt', labeled_dataset)
|
||||
|
||||
dataset_folder = './data/raw/predict/'
|
||||
pointcloud_file = './pointclouds/0_0.xyz'
|
||||
# ------------------------------------------------------------------------------------------------------------------
|
||||
# Clustering that results in per-primitive type clusters
|
||||
# ------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
# Load and pre-process point cloud
|
||||
pcloud = pc.read_pointcloud(pointcloud_file)
|
||||
pcloud = pc.normalize_pointcloud(pcloud, 1)
|
||||
|
||||
#a, b = pc.split_outliers(pcloud, [3, 4, 5])
|
||||
#draw_sample_data(a, True)
|
||||
#draw_sample_data(b, True)
|
||||
#pcloud = a
|
||||
labeled_dataset = np.loadtxt('labeled_dataset.txt')
|
||||
# pc.draw_sample_data(labeled_dataset)
|
||||
|
||||
|
||||
# for 0_0.xyz: pc.hierarchical_clustering(pcloud, [0, 1, 2, 3, 4, 5], eps=0.1, min_samples=5)
|
||||
# TODO: Filter labeled dataset to get rid of edge clusters
|
||||
|
||||
print("Final clustering..")
|
||||
|
||||
#pc_clusters = pc.cluster_dbscan(pcloud, [0, 1, 2, 3,4,5], eps=0.5, min_samples=5)
|
||||
#pc_clusters = pc.filter_clusters(pc_clusters, 100)
|
||||
labeled_dataset = pc.append_onehotencoded_type(labeled_dataset)
|
||||
|
||||
#pc_clusters = [pcloud]
|
||||
print("Test row: ", labeled_dataset[:1, :])
|
||||
|
||||
#print("NUM CLUSTERS: ", len(pc_clusters))
|
||||
total_clusters = []
|
||||
|
||||
#draw_clusters(pc_clusters)
|
||||
#for c in pc_clusters:
|
||||
#draw_sample_data(c, True)
|
||||
# print("Cluster Size: ", len(c))
|
||||
clusters = pc.cluster_dbscan(labeled_dataset, [0,1,2,3,4,5], eps=0.1, min_samples=50)
|
||||
print("Pre-clustering done. Clusters: ", len(clusters))
|
||||
pc.draw_clusters(clusters)
|
||||
|
||||
for cluster in clusters:
|
||||
#cluster = pc.normalize_pointcloud(cluster)
|
||||
|
||||
print("2nd level clustering ..")
|
||||
|
||||
# draw_sample_data(pcloud)
|
||||
|
||||
pc_clusters = pc.hierarchical_clustering(pcloud, selected_indices_0=[0, 1, 2, 3, 4, 5],
|
||||
selected_indices_1=[0, 1, 2, 3, 4, 5], eps=0.1, min_samples=5)
|
||||
# pc.cluster_cubes(pcloud, [4, 4, 4])
|
||||
|
||||
recreate_folder(dataset_folder)
|
||||
for idx, pcc in enumerate(pc_clusters):
|
||||
|
||||
pcc = farthest_point_sampling(pcc, opt.npoints)
|
||||
recreate_folder(dataset_folder + str(idx) + '/')
|
||||
pc.write_pointcloud(dataset_folder + str(idx) + '/pc.xyz', pcc)
|
||||
# draw_sample_data(pcc, False)
|
||||
|
||||
# Load dataset
|
||||
print('load dataset ..')
|
||||
test_transform = GT.Compose([GT.NormalizeScale(), ])
|
||||
|
||||
test_dataset = ShapeNetPartSegDataset(
|
||||
mode='predict',
|
||||
root_dir='data',
|
||||
with_normals=opt.with_normals,
|
||||
npoints=opt.npoints,
|
||||
refresh=True,
|
||||
collate_per_segment=opt.collate_per_segment,
|
||||
has_variations=opt.has_variations,
|
||||
headers=opt.headers
|
||||
)
|
||||
|
||||
num_classes = test_dataset.num_classes()
|
||||
|
||||
# Load model
|
||||
print('Construct model ..')
|
||||
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
||||
dtype = torch.float
|
||||
|
||||
# net = PointNetPartSegmentNet(num_classes)
|
||||
net = PointNet2PartSegmentNet(num_classes, with_normals=opt.with_normals)
|
||||
|
||||
net.load_state_dict(torch.load(opt.model, map_location=device.type))
|
||||
net = net.to(device, dtype)
|
||||
net.eval()
|
||||
|
||||
labeled_dataset = None
|
||||
result_clusters = []
|
||||
# Iterate over all the samples and predict
|
||||
for sample in test_dataset:
|
||||
|
||||
# Predict
|
||||
|
||||
pred_label, gt_label = eval_sample(net, sample)
|
||||
if opt.with_normals:
|
||||
sample_data = np.column_stack((sample["points"].numpy(), pred_label.numpy()))
|
||||
prim_types_in_cluster = len(np.unique(cluster[:, 6], axis=0))
|
||||
if prim_types_in_cluster == 1:
|
||||
print("No need for 2nd level clustering since there is only a single primitive type in the cluster.")
|
||||
total_clusters.append(cluster)
|
||||
else:
|
||||
sample_data = np.column_stack((sample["points"].numpy(), sample["normals"], pred_label.numpy()))
|
||||
sub_clusters = pc.cluster_dbscan(cluster, [0,1,2,7,8,9,10], eps=0.1, min_samples=50)
|
||||
print("Sub clusters: ", len(sub_clusters))
|
||||
total_clusters.extend(sub_clusters)
|
||||
|
||||
# draw_sample_data(sample_data, False)
|
||||
result_clusters = list(filter(lambda c: c.shape[0] > 100, total_clusters))
|
||||
|
||||
#print("Sample Datat: ", sample_data[:5, :])
|
||||
#print('Eval done.')
|
||||
print("PRED LABEL: ", pred_label)
|
||||
for cluster in result_clusters:
|
||||
print("Cluster: ", cluster.shape[0])
|
||||
|
||||
#sample_data = normalize_pointcloud(sample_data)
|
||||
#sample_data = append_onehotencoded_type(sample_data, 1.0)
|
||||
#sample_data = append_normal_angles(sample_data)
|
||||
pc.draw_sample_data(cluster, False)
|
||||
|
||||
# print('Clustering ..')
|
||||
# print('Shape: ' + str(sample_data.shape))
|
||||
print("Number of clusters: ", len(result_clusters))
|
||||
|
||||
# clusters = extract_clusters(sample_data, [0, 1, 2, 3, 4, 5, 7, 8, 9, 10], eps=0.1, min_samples=0.0001, metric='euclidean', algo='auto')
|
||||
# print('Clustering done. ' + str(len(clusters)) + " Clusters.")
|
||||
# print(sample_data[:, 6])
|
||||
|
||||
# draw_sample_data(sample_data, False)
|
||||
|
||||
# result_clusters.extend(clusters)
|
||||
result_clusters.append(sample_data)
|
||||
|
||||
if labeled_dataset is None:
|
||||
labeled_dataset = sample_data
|
||||
else:
|
||||
labeled_dataset = np.vstack((labeled_dataset, sample_data))
|
||||
|
||||
print("prediction done")
|
||||
|
||||
draw_sample_data(labeled_dataset, False)
|
||||
print("point cloud size: ", labeled_dataset.shape)
|
||||
|
||||
print("Min: ", np.min(labeled_dataset[:, :3]))
|
||||
print("Max: ", np.max(labeled_dataset[:, :3]))
|
||||
print("Min: ", np.min(pcloud[:, :3]))
|
||||
print("Max: ", np.max(pcloud[:, :3]))
|
||||
|
||||
|
||||
# TODO: Take result clusters and cluster them by primitive type.
|
||||
pc.draw_clusters(result_clusters)
|
||||
|
||||
# ------------------------------------------------------------------------------------------------------------------
|
||||
# Write clusters to file.
|
||||
# ------------------------------------------------------------------------------------------------------------------
|
||||
pc.write_clusters("clusters.txt", result_clusters)
|
Loading…
x
Reference in New Issue
Block a user