website/_posts/research/2021-03-05-Vision_Transformer.md
2024-11-10 12:16:11 +01:00

997 B

layout, title, categories, excerpt, header
layout title categories excerpt header
single Mel-Vision Transformer research audio deep-learning anomalie-detection Attention based audio classification on Mel-Spektrograms
teaser
assets/figures/12_vision_transformer_teaser.jpg

Leak-Mels{:style="display:block; margin-left:auto; margin-right:auto"}

We apply the vision transformer, a deep machine learning model build around the attention mechanism, on mel-spectrogram representations of raw audio recordings. When adding mel-based data augmentation techniques and sample-weighting, we achieve comparable performance on both (PRS and CCS challenge) tasks of ComParE21, outperforming most single model baselines. We further introduce overlapping vertical patching and evaluate the influence of parameter configurations. {% cite illium2021visual %}

Approach{:style="display:block; margin-left:auto; margin-right:auto"}