website/_posts/research/2019-07-05-deep-neural-baselines.md
2024-11-10 12:16:11 +01:00

1005 B

layout, title, categories, excerpt, header
layout title categories excerpt header
single Deep-Neural Baseline research Introduction a deep baseline for audio classification.
teaser
assets/figures/3_deep_neural_baselines_teaser.jpg

Self-Replication Robustness{:style="display:block; margin-left:auto; margin-right:auto; width:250px"} Detecting sleepiness from spoken language is an ambitious task, which is addressed by the Interspeech 2019 Computational Paralinguistics Challenge (ComParE). We propose an end-to-end deep learning approach to detect and classify patterns reflecting sleepiness in the human voice. Our approach is based solely on a moderately complex deep neural network architecture. It may be applied directly on the audio data without requiring any specific feature engineering, thus remaining transferable to other audio classification tasks. Nevertheless, our approach performs similar to state-of-the-art machine learning models. {% cite elsner2019deep %}