114 lines
3.7 KiB
Python
114 lines
3.7 KiB
Python
import os
|
|
import time
|
|
import dill
|
|
from tqdm import tqdm
|
|
|
|
from collections import defaultdict
|
|
|
|
|
|
class Experiment:
|
|
|
|
@staticmethod
|
|
def from_dill(path):
|
|
with open(path, "rb") as dill_file:
|
|
return dill.load(dill_file)
|
|
|
|
def __init__(self, name=None, ident=None):
|
|
self.experiment_id = ident or time.time()
|
|
self.experiment_name = name or 'unnamed_experiment'
|
|
self.base_dir = self.experiment_name
|
|
self.next_iteration = 0
|
|
self.log_messages = []
|
|
self.data_storage = defaultdict(list)
|
|
|
|
def __enter__(self):
|
|
self.dir = os.path.join(self.base_dir, 'experiments', 'exp-{name}-{id}-{it}'.format(
|
|
name=self.experiment_name, id=self.experiment_id, it=self.next_iteration)
|
|
)
|
|
|
|
os.makedirs(self.dir)
|
|
print("** created {dir} **".format(dir=self.dir))
|
|
return self
|
|
|
|
def __exit__(self, exc_type, exc_value, traceback):
|
|
self.save(experiment=self)
|
|
self.save_log()
|
|
self.next_iteration += 1
|
|
|
|
def log(self, message, **kwargs):
|
|
self.log_messages.append(message)
|
|
print(message, **kwargs)
|
|
|
|
def save_log(self, log_name="log"):
|
|
with open(os.path.join(self.dir, "{name}.txt".format(name=log_name)), "w") as log_file:
|
|
for log_message in self.log_messages:
|
|
print(str(log_message), file=log_file)
|
|
|
|
def save(self, **kwargs):
|
|
for name, value in kwargs.items():
|
|
with open(os.path.join(self.dir, "{name}.dill".format(name=name)), "wb") as dill_file:
|
|
dill.dump(value, dill_file)
|
|
|
|
def add_trajectory_segment(self, run_id, trajectory):
|
|
self.data_storage[run_id].append(trajectory)
|
|
return
|
|
|
|
|
|
class FixpointExperiment(Experiment):
|
|
|
|
def __init__(self):
|
|
super().__init__(name=self.__class__.__name__)
|
|
self.counters = dict(divergent=0, fix_zero=0, fix_other=0, fix_sec=0, other=0)
|
|
self.interesting_fixpoints = []
|
|
|
|
def run_net(self, net, step_limit=100, run_id=0):
|
|
i = 0
|
|
while i < step_limit and not net.is_diverged() and not net.is_fixpoint():
|
|
net.self_attack()
|
|
i += 1
|
|
if run_id:
|
|
weights = net.get_weights_flat()
|
|
self.add_trajectory_segment(run_id, weights)
|
|
self.count(net)
|
|
|
|
def count(self, net):
|
|
if net.is_diverged():
|
|
self.counters['divergent'] += 1
|
|
elif net.is_fixpoint():
|
|
if net.is_zero():
|
|
self.counters['fix_zero'] += 1
|
|
else:
|
|
self.counters['fix_other'] += 1
|
|
self.interesting_fixpoints.append(net.get_weights())
|
|
elif net.is_fixpoint(2):
|
|
self.counters['fix_sec'] += 1
|
|
else:
|
|
self.counters['other'] += 1
|
|
|
|
|
|
class MixedFixpointExperiment(FixpointExperiment):
|
|
|
|
def run_net(self, net, trains_per_application=100, step_limit=100, run_id=0):
|
|
# TODO Where to place the trajectory storage ?
|
|
# weights = net.get_weights()
|
|
# self.add_trajectory_segment(run_id, weights)
|
|
|
|
i = 0
|
|
while i < step_limit and not net.is_diverged() and not net.is_fixpoint():
|
|
net.self_attack()
|
|
with tqdm(postfix=["Loss", dict(value=0)]) as bar:
|
|
for _ in range(trains_per_application):
|
|
loss = net.compiled().train()
|
|
bar.postfix[1]["value"] = loss
|
|
bar.update()
|
|
i += 1
|
|
self.count(net)
|
|
|
|
|
|
class SoupExperiment(Experiment):
|
|
pass
|
|
|
|
|
|
class IdentLearningExperiment(Experiment):
|
|
pass
|