282 lines
13 KiB
Python
282 lines
13 KiB
Python
import os
|
|
from pathlib import Path
|
|
import pickle
|
|
from torch import mean
|
|
|
|
from tqdm import tqdm
|
|
import random
|
|
import copy
|
|
from functionalities_test import is_identity_function, test_status
|
|
from network import Net
|
|
from visualization import plot_3d_self_train, plot_loss
|
|
import numpy as np
|
|
from tabulate import tabulate
|
|
from sklearn.metrics import mean_absolute_error as MAE
|
|
from sklearn.metrics import mean_squared_error as MSE
|
|
import pandas as pd
|
|
import seaborn as sns
|
|
from matplotlib import pyplot as plt
|
|
|
|
|
|
def prng():
|
|
return random.random()
|
|
|
|
|
|
def l1(tup):
|
|
a, b = tup
|
|
return abs(a - b)
|
|
|
|
|
|
def mean_invariate_manhattan_distance(x, y):
|
|
# One of these one-liners that might be smart or really dumb. Goal is to find pairwise
|
|
# distances of ascending values, ie. sum (abs(min1_X-min1_Y), abs(min2_X-min2Y) ...) / mean.
|
|
# Idea was to find weight sets that have same values but just in different positions, that would
|
|
# make this distance 0.
|
|
return np.mean(list(map(l1, zip(sorted(x.numpy()), sorted(y.numpy())))))
|
|
|
|
|
|
def distance_matrix(nets, distance="MIM", print_it=True):
|
|
matrix = [[0 for _ in range(len(nets))] for _ in range(len(nets))]
|
|
for net in range(len(nets)):
|
|
weights = nets[net].input_weight_matrix()[:, 0]
|
|
for other_net in range(len(nets)):
|
|
other_weights = nets[other_net].input_weight_matrix()[:, 0]
|
|
if distance in ["MSE"]:
|
|
matrix[net][other_net] = MSE(weights, other_weights)
|
|
elif distance in ["MAE"]:
|
|
matrix[net][other_net] = MAE(weights, other_weights)
|
|
elif distance in ["MIM"]:
|
|
matrix[net][other_net] = mean_invariate_manhattan_distance(weights, other_weights)
|
|
|
|
if print_it:
|
|
print(f"\nDistance matrix (all to all) [{distance}]:")
|
|
headers = [i.name for i in nets]
|
|
print(tabulate(matrix, showindex=headers, headers=headers, tablefmt='orgtbl'))
|
|
return matrix
|
|
|
|
|
|
def distance_from_parent(nets, distance="MIM", print_it=True):
|
|
list_of_matrices = []
|
|
parents = list(filter(lambda x: "clone" not in x.name and is_identity_function(x), nets))
|
|
distance_range = range(10)
|
|
for parent in parents:
|
|
parent_weights = parent.create_target_weights(parent.input_weight_matrix())
|
|
clones = list(filter(lambda y: parent.name in y.name and parent.name != y.name, nets))
|
|
matrix = [[0 for _ in distance_range] for _ in range(len(clones))]
|
|
|
|
for dist in distance_range:
|
|
for idx, clone in enumerate(clones):
|
|
clone_weights = clone.create_target_weights(clone.input_weight_matrix())
|
|
if distance in ["MSE"]:
|
|
matrix[idx][dist] = MSE(parent_weights, clone_weights) < pow(10, -dist)
|
|
elif distance in ["MAE"]:
|
|
matrix[idx][dist] = MAE(parent_weights, clone_weights) < pow(10, -dist)
|
|
elif distance in ["MIM"]:
|
|
matrix[idx][dist] = mean_invariate_manhattan_distance(parent_weights, clone_weights) < pow(10,
|
|
-dist)
|
|
|
|
if print_it:
|
|
print(f"\nDistances from parent {parent.name} [{distance}]:")
|
|
col_headers = [str(f"10e-{d}") for d in distance_range]
|
|
row_headers = [str(f"clone_{i}") for i in range(len(clones))]
|
|
print(tabulate(matrix, showindex=row_headers, headers=col_headers, tablefmt='orgtbl'))
|
|
|
|
list_of_matrices.append(matrix)
|
|
|
|
return list_of_matrices
|
|
|
|
|
|
class SpawnExperiment:
|
|
|
|
@staticmethod
|
|
def apply_noise(network, noise: int):
|
|
""" Changing the weights of a network to values + noise """
|
|
|
|
for layer_id, layer_name in enumerate(network.state_dict()):
|
|
for line_id, line_values in enumerate(network.state_dict()[layer_name]):
|
|
for weight_id, weight_value in enumerate(network.state_dict()[layer_name][line_id]):
|
|
# network.state_dict()[layer_name][line_id][weight_id] = weight_value + noise
|
|
if prng() < 0.5:
|
|
network.state_dict()[layer_name][line_id][weight_id] = weight_value + noise
|
|
else:
|
|
network.state_dict()[layer_name][line_id][weight_id] = weight_value - noise
|
|
|
|
return network
|
|
|
|
def __init__(self, population_size, log_step_size, net_input_size, net_hidden_size, net_out_size, net_learning_rate,
|
|
epochs, st_steps, nr_clones, noise, directory) -> None:
|
|
self.population_size = population_size
|
|
self.log_step_size = log_step_size
|
|
self.net_input_size = net_input_size
|
|
self.net_hidden_size = net_hidden_size
|
|
self.net_out_size = net_out_size
|
|
self.net_learning_rate = net_learning_rate
|
|
self.epochs = epochs
|
|
self.ST_steps = st_steps
|
|
self.loss_history = []
|
|
self.nets = []
|
|
self.nr_clones = nr_clones
|
|
self.noise = noise or 10e-5
|
|
print("\nNOISE:", self.noise)
|
|
|
|
self.directory = Path(directory)
|
|
self.directory.mkdir(parents=True, exist_ok=True)
|
|
|
|
self.populate_environment()
|
|
self.spawn_and_continue()
|
|
self.weights_evolution_3d_experiment()
|
|
# self.visualize_loss()
|
|
self.distance_matrix = distance_matrix(self.nets, print_it=False)
|
|
self.parent_clone_distances = distance_from_parent(self.nets, print_it=False)
|
|
|
|
self.save()
|
|
|
|
def populate_environment(self):
|
|
loop_population_size = tqdm(range(self.population_size))
|
|
for i in loop_population_size:
|
|
loop_population_size.set_description("Populating experiment %s" % i)
|
|
|
|
net_name = f"ST_net_{str(i)}"
|
|
net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name)
|
|
|
|
for _ in range(self.ST_steps):
|
|
net.self_train(1, self.log_step_size, self.net_learning_rate)
|
|
|
|
self.nets.append(net)
|
|
|
|
def spawn_and_continue(self, number_clones: int = None):
|
|
number_clones = number_clones or self.nr_clones
|
|
|
|
df = pd.DataFrame(
|
|
columns=['parent', 'MAE_pre', 'MAE_post', 'MSE_pre', 'MSE_post', 'MIM_pre', 'MIM_post', 'noise',
|
|
'status_post'])
|
|
|
|
# For every initial net {i} after populating (that is fixpoint after first epoch);
|
|
for i in range(self.population_size):
|
|
net = self.nets[i]
|
|
# We set parent start_time to just before this epoch ended, so plotting is zoomed in. Comment out to
|
|
# to see full trajectory (but the clones will be very hard to see).
|
|
# Make one target to compare distances to clones later when they have trained.
|
|
net.start_time = self.ST_steps - 150
|
|
net_input_data = net.input_weight_matrix()
|
|
net_target_data = net.create_target_weights(net_input_data)
|
|
|
|
if is_identity_function(net):
|
|
print(f"\nNet {i} is fixpoint")
|
|
|
|
# Clone the fixpoint x times and add (+-)self.noise to weight-sets randomly;
|
|
# To plot clones starting after first epoch (z=ST_steps), set that as start_time!
|
|
# To make sure PCA will plot the same trajectory up until this point, we clone the
|
|
# parent-net's weight history as well.
|
|
for j in range(number_clones):
|
|
clone = Net(net.input_size, net.hidden_size, net.out_size,
|
|
f"ST_net_{str(i)}_clone_{str(j)}", start_time=self.ST_steps)
|
|
clone.load_state_dict(copy.deepcopy(net.state_dict()))
|
|
rand_noise = prng() * self.noise
|
|
clone = self.apply_noise(clone, rand_noise)
|
|
clone.s_train_weights_history = copy.deepcopy(net.s_train_weights_history)
|
|
clone.number_trained = copy.deepcopy(net.number_trained)
|
|
|
|
# Pre Training distances (after noise application of course)
|
|
clone_pre_weights = clone.create_target_weights(clone.input_weight_matrix())
|
|
MAE_pre = MAE(net_target_data, clone_pre_weights)
|
|
MSE_pre = MSE(net_target_data, clone_pre_weights)
|
|
MIM_pre = mean_invariate_manhattan_distance(net_target_data, clone_pre_weights)
|
|
|
|
# Then finish training each clone {j} (for remaining epoch-1 * ST_steps) ..
|
|
for _ in range(self.epochs - 1):
|
|
for _ in range(self.ST_steps):
|
|
clone.self_train(1, self.log_step_size, self.net_learning_rate)
|
|
|
|
# Post Training distances for comparison
|
|
clone_post_weights = clone.create_target_weights(clone.input_weight_matrix())
|
|
MAE_post = MAE(net_target_data, clone_post_weights)
|
|
MSE_post = MSE(net_target_data, clone_post_weights)
|
|
MIM_post = mean_invariate_manhattan_distance(net_target_data, clone_post_weights)
|
|
|
|
# .. log to data-frame and add to nets for 3d plotting if they are fixpoints themselves.
|
|
test_status(clone)
|
|
if is_identity_function(clone):
|
|
print(f"Clone {j} (of net_{i}) is fixpoint."
|
|
f"\nMSE({i},{j}): {MSE_post}"
|
|
f"\nMAE({i},{j}): {MAE_post}"
|
|
f"\nMIM({i},{j}): {MIM_post}\n")
|
|
self.nets.append(clone)
|
|
|
|
df.loc[clone.name] = [net.name, MAE_pre, MAE_post, MSE_pre, MSE_post, MIM_pre, MIM_post, self.noise,
|
|
clone.is_fixpoint]
|
|
|
|
# Finally take parent net {i} and finish it's training for comparison to clone development.
|
|
for _ in range(self.epochs - 1):
|
|
for _ in range(self.ST_steps):
|
|
net.self_train(1, self.log_step_size, self.net_learning_rate)
|
|
net_weights_after = net.create_target_weights(net.input_weight_matrix())
|
|
print(f"Parent net's distance to original position."
|
|
f"\nMSE(OG,new): {MAE(net_target_data, net_weights_after)}"
|
|
f"\nMAE(OG,new): {MSE(net_target_data, net_weights_after)}"
|
|
f"\nMIM(OG,new): {mean_invariate_manhattan_distance(net_target_data, net_weights_after)}\n")
|
|
|
|
self.df = df
|
|
|
|
def weights_evolution_3d_experiment(self):
|
|
exp_name = f"ST_{str(len(self.nets))}_nets_3d_weights_PCA"
|
|
return plot_3d_self_train(self.nets, exp_name, self.directory, self.log_step_size, plot_pca_together=True)
|
|
|
|
def visualize_loss(self):
|
|
for i in range(len(self.nets)):
|
|
net_loss_history = self.nets[i].loss_history
|
|
self.loss_history.append(net_loss_history)
|
|
plot_loss(self.loss_history, self.directory)
|
|
|
|
def save(self):
|
|
pickle.dump(self, open(f"{self.directory}/experiment_pickle.p", "wb"))
|
|
print(f"\nSaved experiment to {self.directory}.")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
NET_INPUT_SIZE = 4
|
|
NET_OUT_SIZE = 1
|
|
|
|
# Define number of runs & name:
|
|
ST_runs = 1
|
|
ST_runs_name = "test-27"
|
|
ST_steps = 2500
|
|
ST_epochs = 2
|
|
ST_log_step_size = 10
|
|
|
|
# Define number of networks & their architecture
|
|
nr_clones = 5
|
|
ST_population_size = 1
|
|
ST_net_hidden_size = 2
|
|
ST_net_learning_rate = 0.04
|
|
ST_name_hash = random.getrandbits(32)
|
|
|
|
print(f"Running the Spawn experiment:")
|
|
exp_list = []
|
|
for noise_factor in range(2, 5):
|
|
exp = SpawnExperiment(
|
|
population_size=ST_population_size,
|
|
log_step_size=ST_log_step_size,
|
|
net_input_size=NET_INPUT_SIZE,
|
|
net_hidden_size=ST_net_hidden_size,
|
|
net_out_size=NET_OUT_SIZE,
|
|
net_learning_rate=ST_net_learning_rate,
|
|
epochs=ST_epochs,
|
|
st_steps=ST_steps,
|
|
nr_clones=nr_clones,
|
|
noise=pow(10, -noise_factor),
|
|
directory=Path('output') / 'spawn_basin' / f'{ST_name_hash}' / f'10e-{noise_factor}'
|
|
)
|
|
exp_list.append(exp)
|
|
|
|
# Boxplot with counts of nr_fixpoints, nr_other, nr_etc. on y-axis
|
|
df = pd.concat([exp.df for exp in exp_list])
|
|
sns.countplot(data=df, x="noise", hue="status_post")
|
|
plt.savefig(f"output/spawn_basin/{ST_name_hash}/fixpoint_status_countplot.png")
|
|
|
|
# Catplot (either kind="point" or "box") that shows before-after training distances to parent
|
|
mlt = df[["MIM_pre", "MIM_post", "noise"]].melt("noise", var_name="time", value_name='Average Distance')
|
|
sns.catplot(data=mlt, x="time", y="Average Distance", col="noise", kind="point", col_wrap=5, sharey=False)
|
|
plt.savefig(f"output/spawn_basin/{ST_name_hash}/clone_distance_catplot.png")
|