updated journal_soup_basin: all working, only orange lines not showing
This commit is contained in:
		| @@ -1,21 +1,21 @@ | ||||
| import os | ||||
| from pathlib import Path | ||||
| import pickle | ||||
| from torch import mean | ||||
|  | ||||
| from tqdm import tqdm | ||||
| import random | ||||
| import copy | ||||
| from functionalities_test import is_identity_function, test_status, test_for_fixpoints, is_zero_fixpoint, is_divergent, is_secondary_fixpoint | ||||
| from network import Net | ||||
| from visualization import plot_3d_self_train, plot_loss, plot_3d_soup | ||||
| import pickle | ||||
| import random | ||||
| from pathlib import Path | ||||
|  | ||||
| import numpy as np | ||||
| from tabulate import tabulate | ||||
| from sklearn.metrics import mean_absolute_error as MAE | ||||
| from sklearn.metrics import mean_squared_error as MSE | ||||
| import pandas as pd | ||||
| import seaborn as sns | ||||
| from matplotlib import pyplot as plt | ||||
| from sklearn.metrics import mean_absolute_error as MAE | ||||
| from sklearn.metrics import mean_squared_error as MSE | ||||
| from tabulate import tabulate | ||||
| from tqdm import tqdm | ||||
|  | ||||
| from functionalities_test import is_identity_function, test_status, is_zero_fixpoint, is_divergent, \ | ||||
|     is_secondary_fixpoint | ||||
| from network import Net | ||||
| from visualization import plot_loss, plot_3d_soup | ||||
|  | ||||
|  | ||||
| def prng(): | ||||
| @@ -131,16 +131,16 @@ class SoupSpawnExperiment: | ||||
|         self.populate_environment() | ||||
|  | ||||
|         self.spawn_and_continue() | ||||
|         self.weights_evolution_3d_experiment(self.parents, "only_parents") | ||||
|         # self.weights_evolution_3d_experiment(self.parents, "only_parents") | ||||
|         self.weights_evolution_3d_experiment(self.clones, "only_clones") | ||||
|         self.weights_evolution_3d_experiment(self.parents_with_clones, "parents_with_clones") | ||||
|         self.weights_evolution_3d_experiment(self.parents_clones_id_functions, "id_f_with_parents") | ||||
|         # self.weights_evolution_3d_experiment(self.parents_clones_id_functions, "id_f_with_parents") | ||||
|  | ||||
|         # self.visualize_loss() | ||||
|         self.distance_matrix = distance_matrix(self.parents_clones_id_functions, print_it=False) | ||||
|         self.parent_clone_distances = distance_from_parent(self.parents_clones_id_functions, print_it=False) | ||||
|  | ||||
|         self.save() | ||||
|         # self.save() | ||||
|  | ||||
|     def populate_environment(self): | ||||
|         loop_population_size = tqdm(range(self.population_size)) | ||||
| @@ -195,7 +195,7 @@ class SoupSpawnExperiment: | ||||
|         number_clones = number_clones or self.nr_clones | ||||
|  | ||||
|         df = pd.DataFrame( | ||||
|             columns=['parent', 'MAE_pre', 'MAE_post', 'MSE_pre', 'MSE_post', 'MIM_pre', 'MIM_post', 'noise', | ||||
|             columns=['name', 'parent', 'MAE_pre', 'MAE_post', 'MSE_pre', 'MSE_post', 'MIM_pre', 'MIM_post', 'noise', | ||||
|                      'status_post']) | ||||
|  | ||||
|         # MAE_pre, MSE_pre, MIM_pre = 0, 0, 0 | ||||
| @@ -232,6 +232,7 @@ class SoupSpawnExperiment: | ||||
|                 MIM_pre = mean_invariate_manhattan_distance(net_target_data, clone_pre_weights) | ||||
|  | ||||
|                 df.loc[len(df)] = [clone.name, net.name, MAE_pre, 0, MSE_pre, 0, MIM_pre, 0, self.noise, ""] | ||||
|                 # df.loc[len(df)] = [clone.name, net.name, MAE_pre, 0, 0, 0, 0, 0, self.noise, ""] | ||||
|  | ||||
|                 net.children.append(clone) | ||||
|                 self.clones.append(clone) | ||||
| @@ -262,9 +263,14 @@ class SoupSpawnExperiment: | ||||
|                           f"\nMSE({i},{j}): {MSE_post}" | ||||
|                           f"\nMAE({i},{j}): {MAE_post}" | ||||
|                           f"\nMIM({i},{j}): {MIM_post}\n") | ||||
|                     self.parents_clones_id_functions.append(clone): | ||||
|                     self.parents_clones_id_functions.append(clone) | ||||
|  | ||||
|                 df.loc[df.name==clone.name, ["MAE_post", "MSE_post", "MIM_post", "status_post"]] = [MAE_post, MSE_post, MIM_post, clone.is_fixpoint] | ||||
|                 # df.loc[df.name == clone.name, ["MAE_post", "MSE_post", "MIM_post"]] = [MAE_pre, MSE_pre, MIM_pre] | ||||
|  | ||||
|                 df.loc[df.name == clone.name, ["MAE_post", "MSE_post", "MIM_post", "status_post"]] = [MAE_post, | ||||
|                                                                                                       MSE_post, | ||||
|                                                                                                       MIM_post, | ||||
|                                                                                                       clone.is_fixpoint] | ||||
|  | ||||
|             # Finally take parent net {i} and finish it's training for comparison to clone development. | ||||
|             for _ in range(self.epochs - 1): | ||||
| @@ -289,22 +295,21 @@ class SoupSpawnExperiment: | ||||
|         plot_loss(self.loss_history, self.directory) | ||||
|  | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|  | ||||
|     NET_INPUT_SIZE = 4 | ||||
|     NET_OUT_SIZE = 1 | ||||
|  | ||||
|     # Define number of runs & name: | ||||
|     ST_runs = 1 | ||||
|     ST_runs = 3 | ||||
|     ST_runs_name = "test-27" | ||||
|     soup_ST_steps = 2500 | ||||
|     soup_ST_steps = 1500 | ||||
|     soup_epochs = 2 | ||||
|     soup_log_step_size = 10 | ||||
|  | ||||
|     # Define number of networks & their architecture | ||||
|     nr_clones = 3 | ||||
|     soup_population_size = 2 | ||||
|     nr_clones = 5 | ||||
|     soup_population_size = 3 | ||||
|     soup_net_hidden_size = 2 | ||||
|     soup_net_learning_rate = 0.04 | ||||
|     soup_attack_chance = 10 | ||||
| @@ -312,7 +317,7 @@ if __name__ == "__main__": | ||||
|  | ||||
|     print(f"Running the Soup-Spawn experiment:") | ||||
|     exp_list = [] | ||||
|     for noise_factor in range(2, 3): | ||||
|     for noise_factor in range(2, 5): | ||||
|         exp = SoupSpawnExperiment( | ||||
|             population_size=soup_population_size, | ||||
|             log_step_size=soup_log_step_size, | ||||
| @@ -333,15 +338,28 @@ if __name__ == "__main__": | ||||
|     pickle.dump(exp_list, open(f"{directory}/experiment_pickle_{soup_name_hash}.p", "wb")) | ||||
|     print(f"\nSaved experiment to {directory}.") | ||||
|  | ||||
|     # Boxplot with counts of nr_fixpoints, nr_other, nr_etc. on y-axis | ||||
|     # Concat all dataframes, and add columns depending on where clone weights end up after training (rel. to parent) | ||||
|     df = pd.concat([exp.df for exp in exp_list]) | ||||
|     sns.countplot(data=df, x="noise", hue="status_post") | ||||
|     plt.savefig(f"output/soup_spawn_basin/{soup_name_hash}/fixpoint_status_countplot.png") | ||||
|     df = df.dropna().reset_index() | ||||
|     df["relative_distance"] = [ (df.loc[i]["MAE_pre"] - df.loc[i]["MAE_post"]) for i in range(len(df))] | ||||
|     df["class"] = ["approaching" if df.loc[i]["relative_distance"] > 0 else "distancing" if df.loc[i]["relative_distance"] < 0 else "stationary" for i in range(len(df))] | ||||
|  | ||||
|     # Countplot of all fixpoint clone after training per class. Uncomment and manually adjust xticklabels if x-ax size gets too small. | ||||
|     ax = sns.catplot(kind="count", data=df, x="noise", hue="class", height=5.27, aspect=12.7 / 5.27) | ||||
|     ax.set_axis_labels("Noise Levels", "Clone Fixpoints After Training Count ", fontsize=15) | ||||
|     # ax.set_xticklabels(labels=('10e-10', '10e-9', '10e-8', '10e-7', '10e-6', '10e-5', '10e-4', '10e-3', '10e-2', '10e-1'), fontsize=15) | ||||
|     plt.savefig(f"{directory}/clone_status_after_countplot_{soup_name_hash}.png") | ||||
|     plt.clf() | ||||
|  | ||||
|     # Catplot (either kind="point" or "box") that shows before-after training distances to parent | ||||
|     mlt = df.melt(id_vars=["name", "noise"], value_vars=["MAE_pre", "MAE_post"], var_name="State", value_name="Distance") | ||||
|     ax = sns.catplot(data=mlt, x="State", y="Distance", col="noise", hue="name", kind="point", col_wrap=min(5, len(exp_list)), sharey=False, legend=False) | ||||
|     mlt = df.melt(id_vars=["name", "noise", "class"], value_vars=["MAE_pre", "MAE_post"], var_name="State", | ||||
|                   value_name="Distance") | ||||
|     P = ["blue" if mlt.loc[i]["class"] == "approaching" else "orange" if mlt.loc[i]["class"] == "distancing" else "green" for i in range(len(mlt))] | ||||
|     # P = sns.color_palette(P, as_cmap=False) | ||||
|     ax = sns.catplot(data=mlt, x="State", y="Distance", col="noise", hue="name", kind="point", palette=P, | ||||
|                      col_wrap=min(5, len(exp_list)), sharey=False, legend=False) | ||||
|     ax.map(sns.boxplot, "State", "Distance", "noise", linewidth=0.8, order=["MAE_pre", "MAE_post"], whis=[0, 100]) | ||||
|     ax.set_axis_labels("", "Manhattan Distance To Parent Weights", fontsize=15) | ||||
|     ax.set_xticklabels(labels=('after noise application', 'after training'), fontsize=15) | ||||
|     plt.savefig(f"output/soup_spawn_basin/{soup_name_hash}/clone_distance_catplot.png") | ||||
|     plt.savefig(f"{directory}/before_after_distance_catplot_{soup_name_hash}.png") | ||||
|     plt.clf() | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 ru43zex
					ru43zex