From f7a0d360b3103a6546726e98b57af57c077715a9 Mon Sep 17 00:00:00 2001 From: ru43zex <cristian.lenta@campus.lmu.de> Date: Thu, 24 Jun 2021 16:48:52 +0300 Subject: [PATCH] updated journal_soup_basin: all working, only orange lines not showing --- journal_soup_basins.py | 82 +++++++++++++++++++++++++----------------- 1 file changed, 50 insertions(+), 32 deletions(-) diff --git a/journal_soup_basins.py b/journal_soup_basins.py index a674a2f..3e49e08 100644 --- a/journal_soup_basins.py +++ b/journal_soup_basins.py @@ -1,21 +1,21 @@ -import os -from pathlib import Path -import pickle -from torch import mean - -from tqdm import tqdm -import random import copy -from functionalities_test import is_identity_function, test_status, test_for_fixpoints, is_zero_fixpoint, is_divergent, is_secondary_fixpoint -from network import Net -from visualization import plot_3d_self_train, plot_loss, plot_3d_soup +import pickle +import random +from pathlib import Path + import numpy as np -from tabulate import tabulate -from sklearn.metrics import mean_absolute_error as MAE -from sklearn.metrics import mean_squared_error as MSE import pandas as pd import seaborn as sns from matplotlib import pyplot as plt +from sklearn.metrics import mean_absolute_error as MAE +from sklearn.metrics import mean_squared_error as MSE +from tabulate import tabulate +from tqdm import tqdm + +from functionalities_test import is_identity_function, test_status, is_zero_fixpoint, is_divergent, \ + is_secondary_fixpoint +from network import Net +from visualization import plot_loss, plot_3d_soup def prng(): @@ -131,16 +131,16 @@ class SoupSpawnExperiment: self.populate_environment() self.spawn_and_continue() - self.weights_evolution_3d_experiment(self.parents, "only_parents") + # self.weights_evolution_3d_experiment(self.parents, "only_parents") self.weights_evolution_3d_experiment(self.clones, "only_clones") self.weights_evolution_3d_experiment(self.parents_with_clones, "parents_with_clones") - self.weights_evolution_3d_experiment(self.parents_clones_id_functions, "id_f_with_parents") + # self.weights_evolution_3d_experiment(self.parents_clones_id_functions, "id_f_with_parents") # self.visualize_loss() self.distance_matrix = distance_matrix(self.parents_clones_id_functions, print_it=False) self.parent_clone_distances = distance_from_parent(self.parents_clones_id_functions, print_it=False) - self.save() + # self.save() def populate_environment(self): loop_population_size = tqdm(range(self.population_size)) @@ -172,7 +172,7 @@ class SoupSpawnExperiment: def evolve(self, population): print(f"Clone soup has a population of {len(population)} networks") - loop_epochs = tqdm(range(self.epochs-1)) + loop_epochs = tqdm(range(self.epochs - 1)) for i in loop_epochs: loop_epochs.set_description("\nEvolving clone soup %s" % i) @@ -195,7 +195,7 @@ class SoupSpawnExperiment: number_clones = number_clones or self.nr_clones df = pd.DataFrame( - columns=['parent', 'MAE_pre', 'MAE_post', 'MSE_pre', 'MSE_post', 'MIM_pre', 'MIM_post', 'noise', + columns=['name', 'parent', 'MAE_pre', 'MAE_post', 'MSE_pre', 'MSE_post', 'MIM_pre', 'MIM_post', 'noise', 'status_post']) # MAE_pre, MSE_pre, MIM_pre = 0, 0, 0 @@ -232,6 +232,7 @@ class SoupSpawnExperiment: MIM_pre = mean_invariate_manhattan_distance(net_target_data, clone_pre_weights) df.loc[len(df)] = [clone.name, net.name, MAE_pre, 0, MSE_pre, 0, MIM_pre, 0, self.noise, ""] + # df.loc[len(df)] = [clone.name, net.name, MAE_pre, 0, 0, 0, 0, 0, self.noise, ""] net.children.append(clone) self.clones.append(clone) @@ -262,9 +263,14 @@ class SoupSpawnExperiment: f"\nMSE({i},{j}): {MSE_post}" f"\nMAE({i},{j}): {MAE_post}" f"\nMIM({i},{j}): {MIM_post}\n") - self.parents_clones_id_functions.append(clone): + self.parents_clones_id_functions.append(clone) - df.loc[df.name==clone.name, ["MAE_post", "MSE_post", "MIM_post", "status_post"]] = [MAE_post, MSE_post, MIM_post, clone.is_fixpoint] + # df.loc[df.name == clone.name, ["MAE_post", "MSE_post", "MIM_post"]] = [MAE_pre, MSE_pre, MIM_pre] + + df.loc[df.name == clone.name, ["MAE_post", "MSE_post", "MIM_post", "status_post"]] = [MAE_post, + MSE_post, + MIM_post, + clone.is_fixpoint] # Finally take parent net {i} and finish it's training for comparison to clone development. for _ in range(self.epochs - 1): @@ -289,22 +295,21 @@ class SoupSpawnExperiment: plot_loss(self.loss_history, self.directory) - if __name__ == "__main__": NET_INPUT_SIZE = 4 NET_OUT_SIZE = 1 # Define number of runs & name: - ST_runs = 1 + ST_runs = 3 ST_runs_name = "test-27" - soup_ST_steps = 2500 + soup_ST_steps = 1500 soup_epochs = 2 soup_log_step_size = 10 # Define number of networks & their architecture - nr_clones = 3 - soup_population_size = 2 + nr_clones = 5 + soup_population_size = 3 soup_net_hidden_size = 2 soup_net_learning_rate = 0.04 soup_attack_chance = 10 @@ -312,7 +317,7 @@ if __name__ == "__main__": print(f"Running the Soup-Spawn experiment:") exp_list = [] - for noise_factor in range(2, 3): + for noise_factor in range(2, 5): exp = SoupSpawnExperiment( population_size=soup_population_size, log_step_size=soup_log_step_size, @@ -333,15 +338,28 @@ if __name__ == "__main__": pickle.dump(exp_list, open(f"{directory}/experiment_pickle_{soup_name_hash}.p", "wb")) print(f"\nSaved experiment to {directory}.") - # Boxplot with counts of nr_fixpoints, nr_other, nr_etc. on y-axis + # Concat all dataframes, and add columns depending on where clone weights end up after training (rel. to parent) df = pd.concat([exp.df for exp in exp_list]) - sns.countplot(data=df, x="noise", hue="status_post") - plt.savefig(f"output/soup_spawn_basin/{soup_name_hash}/fixpoint_status_countplot.png") + df = df.dropna().reset_index() + df["relative_distance"] = [ (df.loc[i]["MAE_pre"] - df.loc[i]["MAE_post"]) for i in range(len(df))] + df["class"] = ["approaching" if df.loc[i]["relative_distance"] > 0 else "distancing" if df.loc[i]["relative_distance"] < 0 else "stationary" for i in range(len(df))] + + # Countplot of all fixpoint clone after training per class. Uncomment and manually adjust xticklabels if x-ax size gets too small. + ax = sns.catplot(kind="count", data=df, x="noise", hue="class", height=5.27, aspect=12.7 / 5.27) + ax.set_axis_labels("Noise Levels", "Clone Fixpoints After Training Count ", fontsize=15) + # ax.set_xticklabels(labels=('10e-10', '10e-9', '10e-8', '10e-7', '10e-6', '10e-5', '10e-4', '10e-3', '10e-2', '10e-1'), fontsize=15) + plt.savefig(f"{directory}/clone_status_after_countplot_{soup_name_hash}.png") + plt.clf() # Catplot (either kind="point" or "box") that shows before-after training distances to parent - mlt = df.melt(id_vars=["name", "noise"], value_vars=["MAE_pre", "MAE_post"], var_name="State", value_name="Distance") - ax = sns.catplot(data=mlt, x="State", y="Distance", col="noise", hue="name", kind="point", col_wrap=min(5, len(exp_list)), sharey=False, legend=False) + mlt = df.melt(id_vars=["name", "noise", "class"], value_vars=["MAE_pre", "MAE_post"], var_name="State", + value_name="Distance") + P = ["blue" if mlt.loc[i]["class"] == "approaching" else "orange" if mlt.loc[i]["class"] == "distancing" else "green" for i in range(len(mlt))] + # P = sns.color_palette(P, as_cmap=False) + ax = sns.catplot(data=mlt, x="State", y="Distance", col="noise", hue="name", kind="point", palette=P, + col_wrap=min(5, len(exp_list)), sharey=False, legend=False) ax.map(sns.boxplot, "State", "Distance", "noise", linewidth=0.8, order=["MAE_pre", "MAE_post"], whis=[0, 100]) ax.set_axis_labels("", "Manhattan Distance To Parent Weights", fontsize=15) ax.set_xticklabels(labels=('after noise application', 'after training'), fontsize=15) - plt.savefig(f"output/soup_spawn_basin/{soup_name_hash}/clone_distance_catplot.png") + plt.savefig(f"{directory}/before_after_distance_catplot_{soup_name_hash}.png") + plt.clf()