sparse net training

This commit is contained in:
Steffen Illium
2022-02-26 16:01:12 +01:00
parent 9d8496a725
commit c0db8e19a3
3 changed files with 116 additions and 92 deletions

View File

@ -1,5 +1,6 @@
from collections import defaultdict
import pandas as pd
from torch import nn
import functionalities_test
@ -42,9 +43,10 @@ class SparseLayer(nn.Module):
self.weights.append(weights)
def coo_sparse_layer(self, layer_id):
layer_shape = self.dummy_net_shapes[layer_id]
sparse_diagonal = np.eye(self.nr_nets).repeat(layer_shape[0], axis=-2).repeat(layer_shape[1], axis=-1)
indices = torch.Tensor(np.argwhere(sparse_diagonal == 1).T)
with torch.no_grad():
layer_shape = self.dummy_net_shapes[layer_id]
sparse_diagonal = np.eye(self.nr_nets).repeat(layer_shape[0], axis=-2).repeat(layer_shape[1], axis=-1)
indices = torch.Tensor(np.argwhere(sparse_diagonal == 1).T, )
values = torch.nn.Parameter(torch.randn((np.prod((*layer_shape, self.nr_nets)).item())), requires_grad=True)
return indices, values, sparse_diagonal.shape
@ -54,23 +56,24 @@ class SparseLayer(nn.Module):
# i.e., first interface*hidden weights of layer1, first hidden*hidden weights of layer2
# and first hidden*out weights of layer3 = first net
# [nr_layers*[nr_net*nr_weights_layer_i]]
weights = [layer.view(-1, int(len(layer)/self.nr_nets)) for layer in self.weights]
# [nr_net*[nr_weights]]
weights_per_net = [torch.cat([layer[i] for layer in weights]).view(-1, 1) for i in range(self.nr_nets)]
# (16, 25)
with torch.no_grad():
weights = [layer.view(-1, int(len(layer)/self.nr_nets)).detach() for layer in self.weights]
# [nr_net*[nr_weights]]
weights_per_net = [torch.cat([layer[i] for layer in weights]).view(-1, 1) for i in range(self.nr_nets)]
# (16, 25)
encoding_matrix, mask = self.dummy_net_weight_pos_enc
weight_device = weights_per_net[0].device
if weight_device != encoding_matrix.device or weight_device != mask.device:
encoding_matrix, mask = encoding_matrix.to(weight_device), mask.to(weight_device)
self.dummy_net_weight_pos_enc = encoding_matrix, mask
encoding_matrix, mask = self.dummy_net_weight_pos_enc
weight_device = weights_per_net[0].device
if weight_device != encoding_matrix.device or weight_device != mask.device:
encoding_matrix, mask = encoding_matrix.to(weight_device), mask.to(weight_device)
self.dummy_net_weight_pos_enc = encoding_matrix, mask
inputs = torch.hstack(
[encoding_matrix * mask + weights_per_net[i].expand(-1, encoding_matrix.shape[-1]) * (1 - mask)
for i in range(self.nr_nets)]
)
targets = torch.hstack(weights_per_net)
return inputs.T.detach(), targets.T.detach()
inputs = torch.hstack(
[encoding_matrix * mask + weights_per_net[i].expand(-1, encoding_matrix.shape[-1]) * (1 - mask)
for i in range(self.nr_nets)]
)
targets = torch.hstack(weights_per_net)
return inputs.T, targets.T
@property
def particles(self):
@ -119,29 +122,44 @@ class SparseLayer(nn.Module):
def test_sparse_layer():
net = SparseLayer(500) #50 parallel nets
loss_fn = torch.nn.MSELoss()
optimizer = torch.optim.SGD(net.parameters(), lr=0.004, momentum=0.9)
net = SparseLayer(1000)
loss_fn = torch.nn.MSELoss(reduction='mean')
optimizer = torch.optim.SGD(net.parameters(), lr=0.008, momentum=0.9)
# optimizer = torch.optim.SGD([layer.coalesce().values() for layer in net.sparse_sub_layer], lr=0.004, momentum=0.9)
df = pd.DataFrame(columns=['Epoch', 'Func Type', 'Count'])
for train_iteration in trange(1000):
for train_iteration in trange(20000):
optimizer.zero_grad()
X, Y = net.get_self_train_inputs_and_targets()
out = net(X)
output = net(X)
loss = loss_fn(out, Y)
loss = loss_fn(output, Y) * 100
# print("X:", X.shape, "Y:", Y.shape)
# print("OUT", out.shape)
# print("LOSS", loss.item())
# loss = sum([loss_fn(out, target) for out, target in zip(output, Y)]) / len(output) * 10
loss.backward()
optimizer.step()
if train_iteration % 500 == 0:
counter = defaultdict(lambda: 0)
id_functions = functionalities_test.test_for_fixpoints(counter, list(net.particles))
counter = dict(counter)
tqdm.write(f"identity_fn after {train_iteration + 1} self-train epochs: {counter}")
for key, value in counter.items():
df.loc[df.shape[0]] = (train_iteration, key, value)
counter = defaultdict(lambda: 0)
id_functions = functionalities_test.test_for_fixpoints(counter, list(net.particles))
counter = dict(counter)
print(f"identity_fn after {train_iteration + 1} self-train epochs: {counter}")
tqdm.write(f"identity_fn after {train_iteration + 1} self-train epochs: {counter}")
for key, value in counter.items():
df.loc[df.shape[0]] = (train_iteration, key, value)
df.to_csv('counter.csv', mode='w')
import seaborn as sns
import matplotlib.pyplot as plt
c = pd.read_csv('counter.csv', index_col=0)
sns.lineplot(data=c, x='Epoch', y='Count', hue='Func Type')
plt.savefig('counter.png', dpi=300)
def embed_batch(x, repeat_dim):
@ -241,12 +259,15 @@ class SparseNetwork(nn.Module):
def combined_self_train(self, optimizer, reduction='mean'):
losses = []
loss_fn = nn.MSELoss(reduction=reduction)
for layer in self.sparselayers:
optimizer.zero_grad()
x, target_data = layer.get_self_train_inputs_and_targets()
output = layer(x)
# loss = sum([loss_fn(out, target) for out, target in zip(output, target_data)]) / len(output)
loss = loss_fn(output, target_data) * 100
loss = F.mse_loss(output, target_data, reduction=reduction)
losses.append(loss.detach())
loss.backward()
optimizer.step()
@ -279,33 +300,33 @@ def test_sparse_net():
def test_sparse_net_sef_train():
net = SparseNetwork(30, 5, 6, 10)
epochs = 1000
if True:
optimizer = torch.optim.SGD(net.parameters(), lr=0.004, momentum=0.9)
for _ in trange(epochs):
_ = net.combined_self_train(optimizer)
net = SparseNetwork(5, 5, 6, 10)
epochs = 10000
df = pd.DataFrame(columns=['Epoch', 'Func Type', 'Count'])
optimizer = torch.optim.SGD(net.parameters(), lr=0.004, momentum=0.9)
for epoch in trange(epochs):
_ = net.combined_self_train(optimizer)
else:
optimizer_dict = {
key: torch.optim.SGD(layer.parameters(), lr=0.004, momentum=0.9) for key, layer in enumerate(net.sparselayers)
}
loss_fn = torch.nn.MSELoss(reduction="mean")
if epoch % 500 == 0:
counter = defaultdict(lambda: 0)
id_functions = functionalities_test.test_for_fixpoints(counter, list(net.particles))
counter = dict(counter)
tqdm.write(f"identity_fn after {epoch + 1} self-train epochs: {counter}")
for key, value in counter.items():
df.loc[df.shape[0]] = (epoch, key, value)
for layer, optim in zip(net.sparselayers, optimizer_dict.values()):
for _ in trange(epochs):
optim.zero_grad()
x, target_data = layer.get_self_train_inputs_and_targets()
output = layer(x)
loss = loss_fn(output, target_data)
loss.backward()
optim.step()
# is each of the networks self-replicating?
counter = defaultdict(lambda: 0)
id_functions = functionalities_test.test_for_fixpoints(counter, list(net.particles))
counter = dict(counter)
print(f"identity_fn after {epochs} self-train epochs: {counter}")
tqdm.write(f"identity_fn after {epochs} self-train epochs: {counter}")
for key, value in counter.items():
df.loc[df.shape[0]] = (epoch, key, value)
df.to_csv('counter.csv', mode='w')
import seaborn as sns
import matplotlib.pyplot as plt
c = pd.read_csv('counter.csv', index_col=0)
sns.lineplot(data=c, x='Epoch', y='Count', hue='Func Type')
plt.savefig('counter.png', dpi=300)
def test_manual_for_loop():