journal_basins.py debugged II
Questions for functionalities_test.py corrected some fixes Redo and implementation of everything path related now using pathlib.Path
This commit is contained in:
@ -1,5 +1,6 @@
|
||||
""" ----------------------------------------- Methods for summarizing the experiments ------------------------------------------ """
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
from visualization import line_chart_fixpoints, bar_chart_fixpoints
|
||||
|
||||
@ -52,8 +53,6 @@ def summary_fixpoint_percentage(runs, epochs, fixpoints_percentages, ST_steps, S
|
||||
|
||||
|
||||
""" --------------------------------------------------- Miscellaneous ---------------------------------------------------------- """
|
||||
|
||||
|
||||
def check_folder(experiment_folder: str):
|
||||
if not os.path.isdir("experiments"): os.mkdir(f"experiments/")
|
||||
if not os.path.isdir(f"experiments/{experiment_folder}/"): os.mkdir(f"experiments/{experiment_folder}/")
|
||||
exp_path = Path('experiments') / experiment_folder
|
||||
exp_path.mkdir(parents=True, exist_ok=True)
|
||||
|
@ -37,6 +37,8 @@ def is_identity_function(network: Net, epsilon=pow(10, -5)) -> bool:
|
||||
|
||||
|
||||
def is_zero_fixpoint(network: Net, input_data: Tensor, epsilon=pow(10, -5)) -> bool:
|
||||
# FIXME: Is the the correct test?
|
||||
raise NotImplementedError
|
||||
result = overall_fixpoint_test(network, epsilon, input_data)
|
||||
|
||||
return result
|
||||
@ -50,6 +52,7 @@ def is_secondary_fixpoint(network: Net, input_data: Tensor, epsilon: float) -> b
|
||||
first_output = network(input_data)
|
||||
|
||||
# Getting the second output by initializing a new net with the weights of the original net.
|
||||
# FixMe: Is this correct? I Think it should be the same function thus the same network
|
||||
net_copy = copy.deepcopy(network)
|
||||
net_copy.apply_weights(first_output)
|
||||
input_data_2 = net_copy.input_weight_matrix()
|
||||
@ -57,18 +60,18 @@ def is_secondary_fixpoint(network: Net, input_data: Tensor, epsilon: float) -> b
|
||||
# Calculating second output
|
||||
second_output = network(input_data_2)
|
||||
|
||||
check_smaller_epsilon = all(epsilon > second_output)
|
||||
check_greater_epsilon = all(-epsilon < second_output)
|
||||
# Perform the Check:
|
||||
check_abs_within_epsilon = all(epsilon > abs(input_data - second_output))
|
||||
|
||||
if check_smaller_epsilon and check_greater_epsilon:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
# FIXME: This is wrong, is it?
|
||||
# check_smaller_epsilon = all(epsilon > second_output)
|
||||
# check_greater_epsilon = all(-epsilon < second_output)
|
||||
|
||||
return True if check_abs_within_epsilon else False
|
||||
|
||||
|
||||
def is_weak_fixpoint(network: Net, input_data: Tensor, epsilon: float) -> bool:
|
||||
result = overall_fixpoint_test(network, epsilon, input_data)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
@ -80,7 +83,6 @@ def test_for_fixpoints(fixpoint_counter: Dict, nets: List, id_functions=None):
|
||||
for i in range(len(nets)):
|
||||
net = nets[i]
|
||||
input_data = net.input_weight_matrix()
|
||||
target_data = net.create_target_weights(input_data)
|
||||
|
||||
if is_divergent(nets[i]):
|
||||
fixpoint_counter["divergent"] += 1
|
||||
@ -104,5 +106,6 @@ def test_for_fixpoints(fixpoint_counter: Dict, nets: List, id_functions=None):
|
||||
|
||||
return id_functions
|
||||
|
||||
|
||||
def changing_rate(x_new, x_old):
|
||||
return x_new - x_old
|
||||
|
@ -67,7 +67,7 @@ class SpawnExperiment:
|
||||
return network
|
||||
|
||||
def __init__(self, population_size, log_step_size, net_input_size, net_hidden_size, net_out_size, net_learning_rate,
|
||||
epochs, st_steps, noise, directory_name) -> None:
|
||||
epochs, st_steps, noise, directory) -> None:
|
||||
self.population_size = population_size
|
||||
self.log_step_size = log_step_size
|
||||
self.net_input_size = net_input_size
|
||||
@ -81,7 +81,7 @@ class SpawnExperiment:
|
||||
self.noise = noise or 10e-5
|
||||
print("\nNOISE:", self.noise)
|
||||
|
||||
self.directory = Path(directory_name)
|
||||
self.directory = Path(directory)
|
||||
self.directory.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
self.populate_environment()
|
||||
@ -150,13 +150,13 @@ class SpawnExperiment:
|
||||
|
||||
def weights_evolution_3d_experiment(self):
|
||||
exp_name = f"ST_{str(len(self.nets))}_nets_3d_weights_PCA"
|
||||
return plot_3d_self_train(self.nets, exp_name, self.directory.name, self.log_step_size)
|
||||
return plot_3d_self_train(self.nets, exp_name, self.directory, self.log_step_size)
|
||||
|
||||
def visualize_loss(self):
|
||||
for i in range(len(self.nets)):
|
||||
net_loss_history = self.nets[i].loss_history
|
||||
self.loss_history.append(net_loss_history)
|
||||
plot_loss(self.loss_history, self.directory.name)
|
||||
plot_loss(self.loss_history, self.directory)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
@ -189,5 +189,5 @@ if __name__ == "__main__":
|
||||
epochs=ST_epochs,
|
||||
st_steps=ST_steps,
|
||||
noise=pow(10, -noise_factor),
|
||||
directory_name=f"./experiments/spawn_basin/{ST_name_hash}_10e-{noise_factor}"
|
||||
directory=Path('output') / 'spawn_basin' / f'{ST_name_hash}_10e-{noise_factor}'
|
||||
)
|
||||
|
@ -7,7 +7,6 @@ import matplotlib.pyplot as plt
|
||||
import matplotlib.patches as mpatches
|
||||
import numpy as np
|
||||
from sklearn.decomposition import PCA
|
||||
import os.path
|
||||
import random
|
||||
import string
|
||||
|
||||
@ -20,7 +19,7 @@ def plot_output(output):
|
||||
plt.show()
|
||||
|
||||
|
||||
def plot_loss(loss_array, directory_name, batch_size=1):
|
||||
def plot_loss(loss_array, directory, batch_size=1):
|
||||
""" Plotting the evolution of the loss function."""
|
||||
|
||||
fig = plt.figure()
|
||||
@ -34,15 +33,15 @@ def plot_loss(loss_array, directory_name, batch_size=1):
|
||||
plt.xlabel("Epochs")
|
||||
plt.ylabel("Loss")
|
||||
|
||||
filepath = f"./{directory_name}"
|
||||
filename = f"{filepath}/_nets_loss_function.png"
|
||||
plt.savefig(f"{filename}")
|
||||
directory = Path(directory)
|
||||
filename = "nets_loss_function.png"
|
||||
file_path = directory / filename
|
||||
plt.savefig(str(file_path))
|
||||
|
||||
# plt.show()
|
||||
plt.clf()
|
||||
|
||||
|
||||
def bar_chart_fixpoints(fixpoint_counter: Dict, population_size: int, directory_name: String, learning_rate: float,
|
||||
def bar_chart_fixpoints(fixpoint_counter: Dict, population_size: int, directory: String, learning_rate: float,
|
||||
exp_details: String, source_check=None):
|
||||
""" Plotting the number of fixpoints in a barchart. """
|
||||
|
||||
@ -66,15 +65,15 @@ def bar_chart_fixpoints(fixpoint_counter: Dict, population_size: int, directory_
|
||||
plt.bar(range(len(fixpoint_counter)), list(fixpoint_counter.values()), align='center')
|
||||
plt.xticks(range(len(fixpoint_counter)), list(fixpoint_counter.keys()))
|
||||
|
||||
filepath = f"./{directory_name}"
|
||||
filename = f"{filepath}/{str(population_size)}_nets_fixpoints_barchart.png"
|
||||
plt.savefig(f"{filename}")
|
||||
directory = Path(directory)
|
||||
filename = f"{str(population_size)}_nets_fixpoints_barchart.png"
|
||||
filepath = directory / filename
|
||||
plt.savefig(str(filepath))
|
||||
|
||||
plt.clf()
|
||||
# plt.show()
|
||||
|
||||
|
||||
def plot_3d(matrices_weights_history, folder_name, population_size, z_axis_legend, exp_name="experiment", is_trained="",
|
||||
def plot_3d(matrices_weights_history, directory, population_size, z_axis_legend, exp_name="experiment", is_trained="",
|
||||
batch_size=1):
|
||||
""" Plotting the the weights of the nets in a 3d form using principal component analysis (PCA) """
|
||||
|
||||
@ -121,10 +120,10 @@ def plot_3d(matrices_weights_history, folder_name, population_size, z_axis_legen
|
||||
ax.set_zlabel(f"Epochs")
|
||||
|
||||
# FIXME: Replace this kind of operation with pathlib.Path() object interactions
|
||||
folder = Path(folder_name)
|
||||
folder.mkdir(parents=True, exist_ok=True)
|
||||
directory = Path(directory)
|
||||
directory.mkdir(parents=True, exist_ok=True)
|
||||
filename = f"{exp_name}{is_trained}.png"
|
||||
filepath = folder / filename
|
||||
filepath = directory / filename
|
||||
if filepath.exists():
|
||||
letters = string.ascii_lowercase
|
||||
random_letters = ''.join(random.choice(letters) for _ in range(5))
|
||||
@ -133,10 +132,9 @@ def plot_3d(matrices_weights_history, folder_name, population_size, z_axis_legen
|
||||
plt.savefig(str(filepath))
|
||||
|
||||
plt.show()
|
||||
#plt.clf()
|
||||
|
||||
|
||||
def plot_3d_self_train(nets_array: List, exp_name: String, directory_name: String, batch_size: int):
|
||||
def plot_3d_self_train(nets_array: List, exp_name: String, directory: String, batch_size: int):
|
||||
""" Plotting the evolution of the weights in a 3D space when doing self training. """
|
||||
|
||||
matrices_weights_history = []
|
||||
@ -149,7 +147,7 @@ def plot_3d_self_train(nets_array: List, exp_name: String, directory_name: Strin
|
||||
|
||||
z_axis_legend = "epochs"
|
||||
|
||||
return plot_3d(matrices_weights_history, directory_name, len(nets_array), z_axis_legend, exp_name, "", batch_size)
|
||||
return plot_3d(matrices_weights_history, directory, len(nets_array), z_axis_legend, exp_name, "", batch_size)
|
||||
|
||||
|
||||
def plot_3d_self_application(nets_array: List, exp_name: String, directory_name: String, batch_size: int) -> None:
|
||||
@ -168,23 +166,23 @@ def plot_3d_self_application(nets_array: List, exp_name: String, directory_name:
|
||||
else:
|
||||
is_trained = "_not_trained"
|
||||
|
||||
# Fixme: Are the both following lines on the correct intendation? -> Value of "is_trained" changes multiple times!
|
||||
z_axis_legend = "epochs"
|
||||
|
||||
plot_3d(matrices_weights_history, directory_name, len(nets_array), z_axis_legend, exp_name, is_trained, batch_size)
|
||||
|
||||
|
||||
def plot_3d_soup(nets_list, exp_name, directory_name):
|
||||
def plot_3d_soup(nets_list, exp_name, directory):
|
||||
""" Plotting the evolution of the weights in a 3D space for the soup environment. """
|
||||
|
||||
# This batch size is not relevant for soups. To not affect the number of epochs shown in the 3D plot,
|
||||
# will send forward the number "1" for batch size with the variable <irrelevant_batch_size>.
|
||||
irrelevant_batch_size = 1
|
||||
|
||||
plot_3d_self_train(nets_list, exp_name, directory_name, irrelevant_batch_size)
|
||||
plot_3d_self_train(nets_list, exp_name, directory, irrelevant_batch_size)
|
||||
|
||||
|
||||
def line_chart_fixpoints(fixpoint_counters_history: list, epochs: int, ST_steps_between_SA: int,
|
||||
SA_steps, directory_name: String, population_size: int):
|
||||
SA_steps, directory: String, population_size: int):
|
||||
""" Plotting the percentage of fixpoints after each iteration of SA & ST steps. """
|
||||
|
||||
fig = plt.figure()
|
||||
@ -205,15 +203,15 @@ def line_chart_fixpoints(fixpoint_counters_history: list, epochs: int, ST_steps_
|
||||
|
||||
plt.plot(ST_steps_per_SA, fixpoint_counters_history, color="green", marker="o")
|
||||
|
||||
filepath = f"./{directory_name}"
|
||||
filename = f"{filepath}/{str(population_size)}_nets_fixpoints_linechart.png"
|
||||
plt.savefig(f"{filename}")
|
||||
directory = Path(directory)
|
||||
filename = f"{str(population_size)}_nets_fixpoints_linechart.png"
|
||||
filepath = directory / filename
|
||||
plt.savefig(str(filepath))
|
||||
|
||||
plt.clf()
|
||||
# plt.show()
|
||||
|
||||
|
||||
def box_plot(data, directory_name, population_size):
|
||||
def box_plot(data, directory, population_size):
|
||||
fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(10, 7))
|
||||
|
||||
# ax = fig.add_axes([0, 0, 1, 1])
|
||||
@ -226,16 +224,17 @@ def box_plot(data, directory_name, population_size):
|
||||
axs[1].boxplot(data)
|
||||
axs[1].set_title('Box plot')
|
||||
|
||||
filepath = f"./{directory_name}"
|
||||
filename = f"{filepath}/{str(population_size)}_nets_fixpoints_barchart.png"
|
||||
plt.savefig(f"{filename}")
|
||||
directory = Path(directory)
|
||||
filename = f"{str(population_size)}_nets_fixpoints_barchart.png"
|
||||
filepath = directory / filename
|
||||
|
||||
# plt.show()
|
||||
plt.savefig(str(filepath))
|
||||
plt.clf()
|
||||
|
||||
|
||||
def write_file(text, directory_name):
|
||||
filepath = f"./{directory_name}"
|
||||
f = open(f"{filepath}/experiment.txt", "w+")
|
||||
f.write(text)
|
||||
f.close()
|
||||
def write_file(text, directory):
|
||||
directory = Path(directory)
|
||||
filepath = directory / 'experiment.txt'
|
||||
with filepath.open('w+') as f:
|
||||
f.write(text)
|
||||
f.close()
|
||||
|
Reference in New Issue
Block a user