debugged journal_soup_basin experiment
This commit is contained in:
parent
7e231b5b50
commit
987d7b95f3
@ -79,6 +79,7 @@ def test_for_fixpoints(fixpoint_counter: Dict, nets: List, id_functions=None):
|
|||||||
def changing_rate(x_new, x_old):
|
def changing_rate(x_new, x_old):
|
||||||
return x_new - x_old
|
return x_new - x_old
|
||||||
|
|
||||||
|
|
||||||
def test_status(net: Net) -> Net:
|
def test_status(net: Net) -> Net:
|
||||||
|
|
||||||
if is_divergent(net):
|
if is_divergent(net):
|
||||||
|
@ -6,7 +6,7 @@ from torch import mean
|
|||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
import random
|
import random
|
||||||
import copy
|
import copy
|
||||||
from functionalities_test import is_identity_function, test_status, test_for_fixpoints
|
from functionalities_test import is_identity_function, test_status, test_for_fixpoints, is_zero_fixpoint, is_divergent, is_secondary_fixpoint
|
||||||
from network import Net
|
from network import Net
|
||||||
from visualization import plot_3d_self_train, plot_loss, plot_3d_soup
|
from visualization import plot_3d_self_train, plot_loss, plot_3d_soup
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@ -123,17 +123,22 @@ class SoupSpawnExperiment:
|
|||||||
self.directory.mkdir(parents=True, exist_ok=True)
|
self.directory.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
# Populating environment & evolving entities
|
# Populating environment & evolving entities
|
||||||
self.nets = []
|
self.parents = []
|
||||||
self.id_functions = []
|
self.clones = []
|
||||||
self.clone_soup = []
|
self.parents_with_clones = []
|
||||||
|
self.parents_clones_id_functions = []
|
||||||
|
|
||||||
self.populate_environment()
|
self.populate_environment()
|
||||||
|
|
||||||
self.spawn_and_continue()
|
self.spawn_and_continue()
|
||||||
self.weights_evolution_3d_experiment(self.nets, "parents")
|
self.weights_evolution_3d_experiment(self.parents, "only_parents")
|
||||||
self.weights_evolution_3d_experiment(self.clone_soup, "clones")
|
self.weights_evolution_3d_experiment(self.clones, "only_clones")
|
||||||
|
self.weights_evolution_3d_experiment(self.parents_with_clones, "parents_with_clones")
|
||||||
|
self.weights_evolution_3d_experiment(self.parents_clones_id_functions, "id_f_with_parents")
|
||||||
|
|
||||||
# self.visualize_loss()
|
# self.visualize_loss()
|
||||||
self.distance_matrix = distance_matrix(self.nets, print_it=False)
|
self.distance_matrix = distance_matrix(self.parents_clones_id_functions, print_it=False)
|
||||||
self.parent_clone_distances = distance_from_parent(self.nets, print_it=False)
|
self.parent_clone_distances = distance_from_parent(self.parents_clones_id_functions, print_it=False)
|
||||||
|
|
||||||
self.save()
|
self.save()
|
||||||
|
|
||||||
@ -148,10 +153,21 @@ class SoupSpawnExperiment:
|
|||||||
for _ in range(self.ST_steps):
|
for _ in range(self.ST_steps):
|
||||||
net.self_train(1, self.log_step_size, self.net_learning_rate)
|
net.self_train(1, self.log_step_size, self.net_learning_rate)
|
||||||
|
|
||||||
self.nets.append(net)
|
self.parents.append(net)
|
||||||
|
self.parents_with_clones.append(net)
|
||||||
|
|
||||||
if is_identity_function(net):
|
if is_identity_function(net):
|
||||||
self.id_functions.append(net)
|
self.parents_clones_id_functions.append(net)
|
||||||
|
print(f"\nNet {net.name} is identity function")
|
||||||
|
|
||||||
|
if is_divergent(net):
|
||||||
|
print(f"\nNet {net.name} is divergent")
|
||||||
|
|
||||||
|
if is_zero_fixpoint(net):
|
||||||
|
print(f"\nNet {net.name} is zero fixpoint")
|
||||||
|
|
||||||
|
if is_secondary_fixpoint(net):
|
||||||
|
print(f"\nNet {net.name} is secondary fixpoint")
|
||||||
|
|
||||||
def evolve(self, population):
|
def evolve(self, population):
|
||||||
print(f"Clone soup has a population of {len(population)} networks")
|
print(f"Clone soup has a population of {len(population)} networks")
|
||||||
@ -185,8 +201,8 @@ class SoupSpawnExperiment:
|
|||||||
# MAE_pre, MSE_pre, MIM_pre = 0, 0, 0
|
# MAE_pre, MSE_pre, MIM_pre = 0, 0, 0
|
||||||
|
|
||||||
# For every initial net {i} after populating (that is fixpoint after first epoch);
|
# For every initial net {i} after populating (that is fixpoint after first epoch);
|
||||||
for i in range(len(self.id_functions)):
|
for i in range(len(self.parents)):
|
||||||
net = self.nets[i]
|
net = self.parents[i]
|
||||||
# We set parent start_time to just before this epoch ended, so plotting is zoomed in. Comment out to
|
# We set parent start_time to just before this epoch ended, so plotting is zoomed in. Comment out to
|
||||||
# to see full trajectory (but the clones will be very hard to see).
|
# to see full trajectory (but the clones will be very hard to see).
|
||||||
# Make one target to compare distances to clones later when they have trained.
|
# Make one target to compare distances to clones later when they have trained.
|
||||||
@ -194,7 +210,7 @@ class SoupSpawnExperiment:
|
|||||||
net_input_data = net.input_weight_matrix()
|
net_input_data = net.input_weight_matrix()
|
||||||
net_target_data = net.create_target_weights(net_input_data)
|
net_target_data = net.create_target_weights(net_input_data)
|
||||||
|
|
||||||
print(f"\nNet {i} is fixpoint")
|
# print(f"\nNet {i} is fixpoint")
|
||||||
|
|
||||||
# Clone the fixpoint x times and add (+-)self.noise to weight-sets randomly;
|
# Clone the fixpoint x times and add (+-)self.noise to weight-sets randomly;
|
||||||
# To plot clones starting after first epoch (z=ST_steps), set that as start_time!
|
# To plot clones starting after first epoch (z=ST_steps), set that as start_time!
|
||||||
@ -216,12 +232,15 @@ class SoupSpawnExperiment:
|
|||||||
MIM_pre = mean_invariate_manhattan_distance(net_target_data, clone_pre_weights)
|
MIM_pre = mean_invariate_manhattan_distance(net_target_data, clone_pre_weights)
|
||||||
|
|
||||||
net.children.append(clone)
|
net.children.append(clone)
|
||||||
self.clone_soup.append(clone)
|
self.clones.append(clone)
|
||||||
|
self.parents_with_clones.append(clone)
|
||||||
|
|
||||||
self.evolve(self.clone_soup)
|
self.evolve(self.clones)
|
||||||
|
# evolve also with the parents together
|
||||||
|
# self.evolve(self.parents_with_clones)
|
||||||
|
|
||||||
for i in range(len(self.id_functions)):
|
for i in range(len(self.parents)):
|
||||||
net = self.nets[i]
|
net = self.parents[i]
|
||||||
net_input_data = net.input_weight_matrix()
|
net_input_data = net.input_weight_matrix()
|
||||||
net_target_data = net.create_target_weights(net_input_data)
|
net_target_data = net.create_target_weights(net_input_data)
|
||||||
|
|
||||||
@ -234,14 +253,14 @@ class SoupSpawnExperiment:
|
|||||||
MSE_post = MSE(net_target_data, clone_post_weights)
|
MSE_post = MSE(net_target_data, clone_post_weights)
|
||||||
MIM_post = mean_invariate_manhattan_distance(net_target_data, clone_post_weights)
|
MIM_post = mean_invariate_manhattan_distance(net_target_data, clone_post_weights)
|
||||||
|
|
||||||
# .. log to data-frame and add to nets for 3d plotting if they are fixpoints themselves.
|
# .. log to data-frame and add to nets for 3d plotting if they are fixpoints themselves.
|
||||||
test_status(clone)
|
test_status(clone)
|
||||||
if is_identity_function(clone):
|
if is_identity_function(clone):
|
||||||
print(f"Clone {j} (of net_{i}) is fixpoint."
|
print(f"Clone {j} (of net_{i}) is fixpoint."
|
||||||
f"\nMSE({i},{j}): {MSE_post}"
|
f"\nMSE({i},{j}): {MSE_post}"
|
||||||
f"\nMAE({i},{j}): {MAE_post}"
|
f"\nMAE({i},{j}): {MAE_post}"
|
||||||
f"\nMIM({i},{j}): {MIM_post}\n")
|
f"\nMIM({i},{j}): {MIM_post}\n")
|
||||||
self.nets.append(clone)
|
self.parents_clones_id_functions.append(clone)
|
||||||
|
|
||||||
df.loc[clone.name] = [net.name, MAE_pre, MAE_post, MSE_pre, MSE_post, MIM_pre, MIM_post, self.noise,
|
df.loc[clone.name] = [net.name, MAE_pre, MAE_post, MSE_pre, MSE_post, MIM_pre, MIM_post, self.noise,
|
||||||
clone.is_fixpoint]
|
clone.is_fixpoint]
|
||||||
@ -259,12 +278,12 @@ class SoupSpawnExperiment:
|
|||||||
self.df = df
|
self.df = df
|
||||||
|
|
||||||
def weights_evolution_3d_experiment(self, nets_population, suffix):
|
def weights_evolution_3d_experiment(self, nets_population, suffix):
|
||||||
exp_name = f"soup_basins_{str(len(self.nets))}_nets_3d_weights_PCA_{suffix}"
|
exp_name = f"soup_basins_{str(len(nets_population))}_nets_3d_weights_PCA_{suffix}"
|
||||||
return plot_3d_soup(nets_population, exp_name, self.directory)
|
return plot_3d_soup(nets_population, exp_name, self.directory)
|
||||||
|
|
||||||
def visualize_loss(self):
|
def visualize_loss(self):
|
||||||
for i in range(len(self.nets)):
|
for i in range(len(self.parents)):
|
||||||
net_loss_history = self.nets[i].loss_history
|
net_loss_history = self.parents[i].loss_history
|
||||||
self.loss_history.append(net_loss_history)
|
self.loss_history.append(net_loss_history)
|
||||||
plot_loss(self.loss_history, self.directory)
|
plot_loss(self.loss_history, self.directory)
|
||||||
|
|
||||||
@ -286,7 +305,7 @@ if __name__ == "__main__":
|
|||||||
soup_log_step_size = 10
|
soup_log_step_size = 10
|
||||||
|
|
||||||
# Define number of networks & their architecture
|
# Define number of networks & their architecture
|
||||||
nr_clones = 2
|
nr_clones = 3
|
||||||
soup_population_size = 2
|
soup_population_size = 2
|
||||||
soup_net_hidden_size = 2
|
soup_net_hidden_size = 2
|
||||||
soup_net_learning_rate = 0.04
|
soup_net_learning_rate = 0.04
|
||||||
|
@ -133,7 +133,7 @@ def plot_3d(matrices_weights_history, directory: Union[str, Path], population_si
|
|||||||
ydata.append(weight_matrix_pca[j][1])
|
ydata.append(weight_matrix_pca[j][1])
|
||||||
zdata = np.arange(start_time, len(ydata)*batch_size+start_time, batch_size)
|
zdata = np.arange(start_time, len(ydata)*batch_size+start_time, batch_size)
|
||||||
|
|
||||||
ax.plot3D(xdata, ydata, zdata, label=f"net {i}")
|
ax.plot3D(xdata, ydata, zdata, label=f"net {i}", c="b")
|
||||||
if "parent" in nets_array[i].name:
|
if "parent" in nets_array[i].name:
|
||||||
ax.scatter(np.asarray(xdata), np.asarray(ydata), zdata, s=3, c="b")
|
ax.scatter(np.asarray(xdata), np.asarray(ydata), zdata, s=3, c="b")
|
||||||
else:
|
else:
|
||||||
|
Loading…
x
Reference in New Issue
Block a user