in between upload
This commit is contained in:
@ -16,7 +16,7 @@ from torch.nn import Flatten
|
|||||||
from torch.utils.data import Dataset, DataLoader
|
from torch.utils.data import Dataset, DataLoader
|
||||||
from torchvision.datasets import MNIST
|
from torchvision.datasets import MNIST
|
||||||
from torchvision.transforms import ToTensor, Compose, Resize
|
from torchvision.transforms import ToTensor, Compose, Resize
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm, trange
|
||||||
|
|
||||||
# noinspection DuplicatedCode
|
# noinspection DuplicatedCode
|
||||||
if platform.node() == 'CarbonX':
|
if platform.node() == 'CarbonX':
|
||||||
@ -46,7 +46,7 @@ WORKER = 10 if not debug else 2
|
|||||||
debug = False
|
debug = False
|
||||||
BATCHSIZE = 500 if not debug else 50
|
BATCHSIZE = 500 if not debug else 50
|
||||||
EPOCH = 100
|
EPOCH = 100
|
||||||
VALIDATION_FRQ = 4 if not debug else 1
|
VALIDATION_FRQ = 3 if not debug else 1
|
||||||
SELF_TRAIN_FRQ = 1 if not debug else 1
|
SELF_TRAIN_FRQ = 1 if not debug else 1
|
||||||
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||||
|
|
||||||
@ -292,24 +292,23 @@ if __name__ == '__main__':
|
|||||||
train_to_task_first = False
|
train_to_task_first = False
|
||||||
sequential_task_train = True
|
sequential_task_train = True
|
||||||
force_st_for_n_from_last_epochs = 5
|
force_st_for_n_from_last_epochs = 5
|
||||||
n_st_per_batch = 3
|
n_st_per_batch = 10
|
||||||
activation = None # nn.ReLU()
|
# activation = None # nn.ReLU()
|
||||||
|
|
||||||
use_sparse_network = False
|
use_sparse_network = True
|
||||||
|
|
||||||
for weight_hidden_size in [8]:
|
for weight_hidden_size in [4, 5, 6]:
|
||||||
|
|
||||||
tsk_threshold = 0.85
|
tsk_threshold = 0.85
|
||||||
weight_hidden_size = weight_hidden_size
|
weight_hidden_size = weight_hidden_size
|
||||||
residual_skip = True
|
residual_skip = True
|
||||||
n_seeds = 3
|
n_seeds = 1
|
||||||
|
|
||||||
data_path = Path('data')
|
data_path = Path('data')
|
||||||
data_path.mkdir(exist_ok=True, parents=True)
|
data_path.mkdir(exist_ok=True, parents=True)
|
||||||
assert not (train_to_task_first and train_to_id_first)
|
|
||||||
|
|
||||||
st_str = f'{"" if self_train else "no_"}st{f"_n_{n_st_per_batch}" if n_st_per_batch else ""}'
|
st_str = f'{"" if self_train else "no_"}st{f"_n_{n_st_per_batch}" if n_st_per_batch else ""}'
|
||||||
ac_str = f'_{activation.__class__.__name__}' if activation is not None else ''
|
# ac_str = f'_{activation.__class__.__name__}' if activation is not None else ''
|
||||||
res_str = f'{"" if residual_skip else "_no_res"}'
|
res_str = f'{"" if residual_skip else "_no_res"}'
|
||||||
# dr_str = f'{f"_dr_{dropout}" if dropout != 0 else ""}'
|
# dr_str = f'{f"_dr_{dropout}" if dropout != 0 else ""}'
|
||||||
id_str = f'{f"_StToId" if train_to_id_first else ""}'
|
id_str = f'{f"_StToId" if train_to_id_first else ""}'
|
||||||
@ -318,7 +317,7 @@ if __name__ == '__main__':
|
|||||||
f_str = f'_f_{force_st_for_n_from_last_epochs}' if \
|
f_str = f'_f_{force_st_for_n_from_last_epochs}' if \
|
||||||
force_st_for_n_from_last_epochs and sequential_task_train and train_to_task_first else ""
|
force_st_for_n_from_last_epochs and sequential_task_train and train_to_task_first else ""
|
||||||
config_str = f'{res_str}{id_str}{tsk_str}{f_str}{sprs_str}'
|
config_str = f'{res_str}{id_str}{tsk_str}{f_str}{sprs_str}'
|
||||||
exp_path = Path('output') / f'mn_{st_str}_{EPOCH}_{weight_hidden_size}{config_str}{ac_str}'
|
exp_path = Path('output') / f'mn_{st_str}_{EPOCH}_{weight_hidden_size}{config_str}'
|
||||||
|
|
||||||
if not training:
|
if not training:
|
||||||
# noinspection PyRedeclaration
|
# noinspection PyRedeclaration
|
||||||
@ -326,10 +325,12 @@ if __name__ == '__main__':
|
|||||||
|
|
||||||
for seed in range(n_seeds):
|
for seed in range(n_seeds):
|
||||||
seed_path = exp_path / str(seed)
|
seed_path = exp_path / str(seed)
|
||||||
|
seed_path.mkdir(exist_ok=True, parents=True)
|
||||||
|
|
||||||
model_path = seed_path / '0000_trained_model.zip'
|
model_path = seed_path / '0000_trained_model.zip'
|
||||||
df_store_path = seed_path / 'train_store.csv'
|
df_store_path = seed_path / 'train_store.csv'
|
||||||
weight_store_path = seed_path / 'weight_store.csv'
|
weight_store_path = seed_path / 'weight_store.csv'
|
||||||
|
init_st_store_path = seed_path / 'init_st_counter.csv'
|
||||||
srnn_parameters = dict()
|
srnn_parameters = dict()
|
||||||
|
|
||||||
if training:
|
if training:
|
||||||
@ -345,92 +346,139 @@ if __name__ == '__main__':
|
|||||||
d = DataLoader(dataset, batch_size=BATCHSIZE, shuffle=True, drop_last=True, num_workers=WORKER)
|
d = DataLoader(dataset, batch_size=BATCHSIZE, shuffle=True, drop_last=True, num_workers=WORKER)
|
||||||
|
|
||||||
interface = np.prod(dataset[0][0].shape)
|
interface = np.prod(dataset[0][0].shape)
|
||||||
dense_metanet = MetaNet(interface, depth=5, width=6, out=10, residual_skip=residual_skip,
|
dense_metanet = MetaNet(interface, depth=3, width=6, out=10, residual_skip=residual_skip,
|
||||||
weight_hidden_size=weight_hidden_size, activation=activation).to(DEVICE)
|
weight_hidden_size=weight_hidden_size
|
||||||
sparse_metanet = SparseNetwork(interface, depth=5, width=6, out=10, residual_skip=residual_skip,
|
).to(DEVICE)
|
||||||
weight_hidden_size=weight_hidden_size, activation=activation
|
sparse_metanet = SparseNetwork(interface, depth=3, width=6, out=10, residual_skip=residual_skip,
|
||||||
|
weight_hidden_size=weight_hidden_size
|
||||||
).to(DEVICE) if use_sparse_network else dense_metanet
|
).to(DEVICE) if use_sparse_network else dense_metanet
|
||||||
meta_weight_count = sum(p.numel() for p in next(dense_metanet.particles).parameters())
|
meta_weight_count = sum(p.numel() for p in next(dense_metanet.particles).parameters())
|
||||||
|
|
||||||
loss_fn = nn.CrossEntropyLoss()
|
loss_fn = nn.CrossEntropyLoss()
|
||||||
dense_optimizer = torch.optim.SGD(dense_metanet.parameters(), lr=0.004, momentum=0.9)
|
optimizer = torch.optim.SGD(sparse_metanet.parameters(), lr=0.004, momentum=0.9)
|
||||||
sparse_optimizer = torch.optim.SGD(
|
|
||||||
sparse_metanet.parameters(), lr=0.004, momentum=0.9
|
|
||||||
) if use_sparse_network else dense_optimizer
|
|
||||||
|
|
||||||
train_store = new_storage_df('train', None)
|
train_store = new_storage_df('train', None)
|
||||||
weight_store = new_storage_df('weights', meta_weight_count)
|
weight_store = new_storage_df('weights', meta_weight_count)
|
||||||
init_tsk = train_to_task_first
|
|
||||||
for epoch in tqdm(range(EPOCH), desc=f'Train - Epochs'):
|
if train_to_task_first:
|
||||||
|
dense_metanet = dense_metanet.train()
|
||||||
|
for epoch in trange(10):
|
||||||
|
for batch, (batch_x, batch_y) in tqdm(enumerate(d), total=len(d), desc='Train - Batch'):
|
||||||
|
# Task Train
|
||||||
|
# Zero your gradients for every batch!
|
||||||
|
optimizer.zero_grad()
|
||||||
|
batch_x, batch_y = batch_x.to(DEVICE), batch_y.to(DEVICE)
|
||||||
|
y_pred = dense_metanet(batch_x)
|
||||||
|
|
||||||
|
loss = loss_fn(y_pred, batch_y.to(torch.long))
|
||||||
|
loss.backward()
|
||||||
|
|
||||||
|
# Adjust learning weights
|
||||||
|
optimizer.step()
|
||||||
|
step_log = dict(Epoch=epoch, Batch=batch,
|
||||||
|
Metric='Task Loss', Score=loss.item())
|
||||||
|
train_store.loc[train_store.shape[0]] = step_log
|
||||||
|
# Transfer weights
|
||||||
|
if use_sparse_network:
|
||||||
|
sparse_metanet = sparse_metanet.replace_weights_by_particles(dense_metanet.particles)
|
||||||
|
|
||||||
|
if train_to_id_first:
|
||||||
|
sparse_metanet = sparse_metanet.train()
|
||||||
|
init_st_epochs = 1500
|
||||||
|
init_st_df = pd.DataFrame(columns=['Epoch', 'Func Type', 'Count'])
|
||||||
|
|
||||||
|
for st_epoch in trange(init_st_epochs):
|
||||||
|
_ = sparse_metanet.combined_self_train(optimizer)
|
||||||
|
|
||||||
|
if st_epoch % 500 == 0:
|
||||||
|
counter = defaultdict(lambda: 0)
|
||||||
|
id_functions = test_for_fixpoints(counter, list(sparse_metanet.particles))
|
||||||
|
counter = dict(counter)
|
||||||
|
tqdm.write(f"identity_fn after {st_epoch} self-train epochs: {counter}")
|
||||||
|
for key, value in counter.items():
|
||||||
|
init_st_df.loc[init_st_df.shape[0]] = (st_epoch, key, value)
|
||||||
|
sparse_metanet.reset_diverged_particles()
|
||||||
|
counter = defaultdict(lambda: 0)
|
||||||
|
id_functions = test_for_fixpoints(counter, list(sparse_metanet.particles))
|
||||||
|
counter = dict(counter)
|
||||||
|
tqdm.write(f"identity_fn after {init_st_epochs} self-train epochs: {counter}")
|
||||||
|
for key, value in counter.items():
|
||||||
|
init_st_df.loc[init_st_df.shape[0]] = (init_st_epochs, key, value)
|
||||||
|
init_st_df.to_csv(init_st_store_path, mode='w', index=False)
|
||||||
|
|
||||||
|
c = pd.read_csv(init_st_store_path)
|
||||||
|
sns.lineplot(data=c, x='Epoch', y='Count', hue='Func Type')
|
||||||
|
plt.savefig(init_st_store_path.parent / f'{init_st_store_path.stem}.png', dpi=300)
|
||||||
|
|
||||||
|
# Transfer weights
|
||||||
|
if use_sparse_network:
|
||||||
|
dense_metanet = dense_metanet.replace_particles(sparse_metanet.particle_weights)
|
||||||
|
|
||||||
|
for epoch in trange(EPOCH, desc=f'Train - Epochs'):
|
||||||
tqdm.write(f'{seed}: {exp_path}')
|
tqdm.write(f'{seed}: {exp_path}')
|
||||||
is_validation_epoch = epoch % VALIDATION_FRQ == 0 if not debug else True
|
is_validation_epoch = (epoch % VALIDATION_FRQ == 0) if not debug else True
|
||||||
is_self_train_epoch = epoch % SELF_TRAIN_FRQ == 0 if not debug else True
|
is_self_train_epoch = (epoch % SELF_TRAIN_FRQ == 0) if not debug else True
|
||||||
sparse_metanet = sparse_metanet.train()
|
sparse_metanet = sparse_metanet.train()
|
||||||
dense_metanet = dense_metanet.train()
|
dense_metanet = dense_metanet.train()
|
||||||
if is_validation_epoch:
|
if is_validation_epoch:
|
||||||
metric = torchmetrics.Accuracy()
|
metric = torchmetrics.Accuracy()
|
||||||
else:
|
else:
|
||||||
metric = None
|
metric = None
|
||||||
init_st = train_to_id_first and not all(
|
|
||||||
x.is_fixpoint == ft.identity_func for x in dense_metanet.particles
|
for batch, (batch_x, batch_y) in tqdm(enumerate(d), total=len(d), desc='Train - Batch'):
|
||||||
)
|
|
||||||
force_st = (force_st_for_n_from_last_epochs >= (EPOCH - epoch)
|
|
||||||
) and sequential_task_train and force_st_for_n_from_last_epochs
|
|
||||||
for batch, (batch_x, batch_y) in tqdm(enumerate(d), total=len(d), desc='MetaNet Train - Batch'):
|
|
||||||
|
|
||||||
# Self Train
|
# Self Train
|
||||||
if self_train and ((not init_tsk and (is_self_train_epoch or init_st)) or force_st):
|
if is_self_train_epoch:
|
||||||
# Transfer weights
|
|
||||||
if use_sparse_network:
|
|
||||||
sparse_metanet = sparse_metanet.replace_weights_by_particles(dense_metanet.particles)
|
|
||||||
for _ in range(n_st_per_batch):
|
for _ in range(n_st_per_batch):
|
||||||
self_train_loss = sparse_metanet.combined_self_train(sparse_optimizer, reduction='mean')
|
self_train_loss = sparse_metanet.combined_self_train(optimizer)
|
||||||
# noinspection PyUnboundLocalVariable
|
# noinspection PyUnboundLocalVariable
|
||||||
step_log = dict(Epoch=epoch, Batch=batch,
|
step_log = dict(Epoch=epoch, Batch=batch,
|
||||||
Metric='Self Train Loss', Score=self_train_loss.item())
|
Metric='Self Train Loss', Score=self_train_loss.item())
|
||||||
train_store.loc[train_store.shape[0]] = step_log
|
train_store.loc[train_store.shape[0]] = step_log
|
||||||
|
# Clean Divergent
|
||||||
|
sparse_metanet.reset_diverged_particles()
|
||||||
# Transfer weights
|
# Transfer weights
|
||||||
if use_sparse_network:
|
if use_sparse_network:
|
||||||
dense_metanet = dense_metanet.replace_particles(sparse_metanet.particle_weights)
|
dense_metanet = dense_metanet.replace_particles(sparse_metanet.particle_weights)
|
||||||
|
|
||||||
dense_metanet.reset_diverged_particles()
|
|
||||||
|
|
||||||
# Task Train
|
# Task Train
|
||||||
if not init_st:
|
# Zero your gradients for every batch!
|
||||||
# Zero your gradients for every batch!
|
optimizer.zero_grad()
|
||||||
dense_optimizer.zero_grad()
|
batch_x, batch_y = batch_x.to(DEVICE), batch_y.to(DEVICE)
|
||||||
batch_x, batch_y = batch_x.to(DEVICE), batch_y.to(DEVICE)
|
y_pred = dense_metanet(batch_x)
|
||||||
y_pred = dense_metanet(batch_x)
|
|
||||||
# loss = loss_fn(y, batch_y.unsqueeze(-1).to(torch.float32))
|
|
||||||
loss = loss_fn(y_pred, batch_y.to(torch.long))
|
|
||||||
loss.backward()
|
|
||||||
|
|
||||||
# Adjust learning weights
|
loss = loss_fn(y_pred, batch_y.to(torch.long))
|
||||||
dense_optimizer.step()
|
loss.backward()
|
||||||
|
|
||||||
step_log = dict(Epoch=epoch, Batch=batch,
|
# Adjust learning weights
|
||||||
Metric='Task Loss', Score=loss.item())
|
optimizer.step()
|
||||||
train_store.loc[train_store.shape[0]] = step_log
|
|
||||||
if is_validation_epoch:
|
# Transfer weights
|
||||||
metric(y_pred.cpu(), batch_y.cpu())
|
if use_sparse_network:
|
||||||
|
sparse_metanet = sparse_metanet.replace_weights_by_particles(dense_metanet.particles)
|
||||||
|
|
||||||
|
step_log = dict(Epoch=epoch, Batch=batch,
|
||||||
|
Metric='Task Loss', Score=loss.item())
|
||||||
|
train_store.loc[train_store.shape[0]] = step_log
|
||||||
|
if is_validation_epoch:
|
||||||
|
metric(y_pred.cpu(), batch_y.cpu())
|
||||||
|
|
||||||
if batch >= 3 and debug:
|
if batch >= 3 and debug:
|
||||||
break
|
break
|
||||||
|
|
||||||
if is_validation_epoch:
|
if is_validation_epoch:
|
||||||
dense_metanet = dense_metanet.eval()
|
dense_metanet = dense_metanet.eval()
|
||||||
if not init_st:
|
|
||||||
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
|
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
|
||||||
Metric='Train Accuracy', Score=metric.compute().item())
|
Metric='Train Accuracy', Score=metric.compute().item())
|
||||||
train_store.loc[train_store.shape[0]] = validation_log
|
train_store.loc[train_store.shape[0]] = validation_log
|
||||||
|
|
||||||
accuracy = checkpoint_and_validate(dense_metanet, seed_path, epoch).item()
|
accuracy = checkpoint_and_validate(dense_metanet, seed_path, epoch).item()
|
||||||
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
|
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
|
||||||
Metric='Test Accuracy', Score=accuracy)
|
Metric='Test Accuracy', Score=accuracy)
|
||||||
train_store.loc[train_store.shape[0]] = validation_log
|
train_store.loc[train_store.shape[0]] = validation_log
|
||||||
if init_tsk or (train_to_task_first and sequential_task_train):
|
|
||||||
init_tsk = accuracy <= tsk_threshold
|
if is_validation_epoch:
|
||||||
if init_st or is_validation_epoch:
|
|
||||||
counter_dict = defaultdict(lambda: 0)
|
counter_dict = defaultdict(lambda: 0)
|
||||||
# This returns ID-functions
|
# This returns ID-functions
|
||||||
_ = test_for_fixpoints(counter_dict, list(dense_metanet.particles))
|
_ = test_for_fixpoints(counter_dict, list(dense_metanet.particles))
|
||||||
@ -439,12 +487,14 @@ if __name__ == '__main__':
|
|||||||
step_log = dict(Epoch=int(epoch), Batch=BATCHSIZE, Metric=key, Score=value)
|
step_log = dict(Epoch=int(epoch), Batch=BATCHSIZE, Metric=key, Score=value)
|
||||||
train_store.loc[train_store.shape[0]] = step_log
|
train_store.loc[train_store.shape[0]] = step_log
|
||||||
tqdm.write(f'Fixpoint Tester Results: {counter_dict}')
|
tqdm.write(f'Fixpoint Tester Results: {counter_dict}')
|
||||||
if init_st or is_validation_epoch:
|
|
||||||
for particle in dense_metanet.particles:
|
for particle in dense_metanet.particles:
|
||||||
weight_log = (epoch, particle.name, *flat_for_store(particle.parameters()))
|
weight_log = (epoch, particle.name, *flat_for_store(particle.parameters()))
|
||||||
weight_store.loc[weight_store.shape[0]] = weight_log
|
weight_store.loc[weight_store.shape[0]] = weight_log
|
||||||
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists(), index=False)
|
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists(),
|
||||||
weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists(), index=False)
|
index=False)
|
||||||
|
weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists(),
|
||||||
|
index=False)
|
||||||
train_store = new_storage_df('train', None)
|
train_store = new_storage_df('train', None)
|
||||||
weight_store = new_storage_df('weights', meta_weight_count)
|
weight_store = new_storage_df('weights', meta_weight_count)
|
||||||
|
|
||||||
|
@ -445,10 +445,12 @@ class MetaNet(nn.Module):
|
|||||||
tensor = self._meta_layer_first(x)
|
tensor = self._meta_layer_first(x)
|
||||||
residual = None
|
residual = None
|
||||||
for idx, meta_layer in enumerate(self._meta_layer_list, start=1):
|
for idx, meta_layer in enumerate(self._meta_layer_list, start=1):
|
||||||
if idx % 2 == 1 and self.residual_skip:
|
# if idx % 2 == 1 and self.residual_skip:
|
||||||
|
if self.residual_skip:
|
||||||
residual = tensor
|
residual = tensor
|
||||||
tensor = meta_layer(tensor)
|
tensor = meta_layer(tensor)
|
||||||
if idx % 2 == 0 and self.residual_skip:
|
# if idx % 2 == 0 and self.residual_skip:
|
||||||
|
if self.residual_skip:
|
||||||
tensor = tensor + residual
|
tensor = tensor + residual
|
||||||
tensor = self._meta_layer_last(tensor)
|
tensor = self._meta_layer_last(tensor)
|
||||||
return tensor
|
return tensor
|
||||||
|
@ -1,25 +1,29 @@
|
|||||||
from collections import defaultdict
|
from collections import defaultdict
|
||||||
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
from matplotlib import pyplot as plt
|
||||||
|
import seaborn as sns
|
||||||
from torch import nn
|
from torch import nn
|
||||||
|
|
||||||
import functionalities_test
|
import functionalities_test
|
||||||
from network import Net
|
from network import Net
|
||||||
from functionalities_test import is_identity_function
|
from functionalities_test import is_identity_function, test_for_fixpoints, epsilon_error_margin
|
||||||
from tqdm import tqdm,trange
|
from tqdm import tqdm, trange
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
import torch
|
import torch
|
||||||
from torch.nn import Flatten
|
from torch.nn import Flatten
|
||||||
from torch.utils.data import DataLoader
|
from torch.utils.data import DataLoader
|
||||||
import torch.nn.functional as F
|
|
||||||
from torchvision.datasets import MNIST
|
from torchvision.datasets import MNIST
|
||||||
from torchvision.transforms import ToTensor, Compose, Resize
|
from torchvision.transforms import ToTensor, Compose, Resize
|
||||||
|
|
||||||
|
|
||||||
def xavier_init(m):
|
def xavier_init(m):
|
||||||
if isinstance(m, nn.Linear):
|
if isinstance(m, nn.Linear):
|
||||||
nn.init.xavier_uniform_(m.weight.data)
|
return nn.init.xavier_uniform_(m.weight.data)
|
||||||
|
if isinstance(m, torch.Tensor):
|
||||||
|
return nn.init.xavier_uniform_(m)
|
||||||
|
|
||||||
|
|
||||||
class SparseLayer(nn.Module):
|
class SparseLayer(nn.Module):
|
||||||
@ -101,7 +105,9 @@ class SparseLayer(nn.Module):
|
|||||||
for weights in self.weights:
|
for weights in self.weights:
|
||||||
if torch.isinf(weights).any() or torch.isnan(weights).any():
|
if torch.isinf(weights).any() or torch.isnan(weights).any():
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
xavier_init(weights)
|
where_nan = torch.nan_to_num(weights, -99, -99, -99)
|
||||||
|
mask = torch.where(where_nan == -99, 0, 1)
|
||||||
|
weights[:] = (where_nan * mask + torch.randn_like(weights) * (1 - mask))[:]
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def particle_weights(self):
|
def particle_weights(self):
|
||||||
@ -139,8 +145,9 @@ def test_sparse_layer():
|
|||||||
optimizer = torch.optim.SGD(net.parameters(), lr=0.008, momentum=0.9)
|
optimizer = torch.optim.SGD(net.parameters(), lr=0.008, momentum=0.9)
|
||||||
# optimizer = torch.optim.SGD([layer.coalesce().values() for layer in net.sparse_sub_layer], lr=0.004, momentum=0.9)
|
# optimizer = torch.optim.SGD([layer.coalesce().values() for layer in net.sparse_sub_layer], lr=0.004, momentum=0.9)
|
||||||
df = pd.DataFrame(columns=['Epoch', 'Func Type', 'Count'])
|
df = pd.DataFrame(columns=['Epoch', 'Func Type', 'Count'])
|
||||||
|
train_iterations = 20000
|
||||||
|
|
||||||
for train_iteration in trange(20000):
|
for train_iteration in trange(train_iterations):
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
X, Y = net.get_self_train_inputs_and_targets()
|
X, Y = net.get_self_train_inputs_and_targets()
|
||||||
output = net(X)
|
output = net(X)
|
||||||
@ -163,12 +170,11 @@ def test_sparse_layer():
|
|||||||
counter = defaultdict(lambda: 0)
|
counter = defaultdict(lambda: 0)
|
||||||
id_functions = functionalities_test.test_for_fixpoints(counter, list(net.particles))
|
id_functions = functionalities_test.test_for_fixpoints(counter, list(net.particles))
|
||||||
counter = dict(counter)
|
counter = dict(counter)
|
||||||
tqdm.write(f"identity_fn after {train_iteration + 1} self-train epochs: {counter}")
|
tqdm.write(f"identity_fn after {train_iterations} self-train epochs: {counter}")
|
||||||
for key, value in counter.items():
|
for key, value in counter.items():
|
||||||
df.loc[df.shape[0]] = (train_iteration, key, value)
|
df.loc[df.shape[0]] = (train_iterations, key, value)
|
||||||
df.to_csv('counter.csv', mode='w')
|
df.to_csv('counter.csv', mode='w')
|
||||||
import seaborn as sns
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
c = pd.read_csv('counter.csv', index_col=0)
|
c = pd.read_csv('counter.csv', index_col=0)
|
||||||
sns.lineplot(data=c, x='Epoch', y='Count', hue='Func Type')
|
sns.lineplot(data=c, x='Epoch', y='Count', hue='Func Type')
|
||||||
plt.savefig('counter.png', dpi=300)
|
plt.savefig('counter.png', dpi=300)
|
||||||
@ -191,6 +197,11 @@ def embed_vector(x, repeat_dim):
|
|||||||
|
|
||||||
|
|
||||||
class SparseNetwork(nn.Module):
|
class SparseNetwork(nn.Module):
|
||||||
|
|
||||||
|
@property
|
||||||
|
def nr_nets(self):
|
||||||
|
return sum(x.nr_nets for x in self.sparselayers)
|
||||||
|
|
||||||
def __init__(self, input_dim, depth, width, out, residual_skip=True, activation=None,
|
def __init__(self, input_dim, depth, width, out, residual_skip=True, activation=None,
|
||||||
weight_interface=5, weight_hidden_size=2, weight_output_size=1
|
weight_interface=5, weight_hidden_size=2, weight_output_size=1
|
||||||
):
|
):
|
||||||
@ -216,16 +227,13 @@ class SparseNetwork(nn.Module):
|
|||||||
if self.activation:
|
if self.activation:
|
||||||
tensor = self.activation(tensor)
|
tensor = self.activation(tensor)
|
||||||
for nl_idx, network_layer in enumerate(self.hidden_layers):
|
for nl_idx, network_layer in enumerate(self.hidden_layers):
|
||||||
# Sparse Layer pass
|
# if idx % 2 == 1 and self.residual_skip:
|
||||||
|
if self.residual_skip:
|
||||||
|
residual = tensor
|
||||||
tensor = self.sparse_layer_forward(tensor, network_layer)
|
tensor = self.sparse_layer_forward(tensor, network_layer)
|
||||||
|
# if idx % 2 == 0 and self.residual_skip:
|
||||||
if self.activation:
|
if self.residual_skip:
|
||||||
tensor = self.activation(tensor)
|
tensor = tensor + residual
|
||||||
if nl_idx % 2 == 0 and self.residual_skip:
|
|
||||||
residual = tensor.clone()
|
|
||||||
if nl_idx % 2 == 1 and self.residual_skip:
|
|
||||||
# noinspection PyUnboundLocalVariable
|
|
||||||
tensor += residual
|
|
||||||
tensor = self.sparse_layer_forward(tensor, self.last_layer, view_dim=self.out_dim)
|
tensor = self.sparse_layer_forward(tensor, self.last_layer, view_dim=self.out_dim)
|
||||||
return tensor
|
return tensor
|
||||||
|
|
||||||
@ -282,7 +290,7 @@ class SparseNetwork(nn.Module):
|
|||||||
output = layer(x)
|
output = layer(x)
|
||||||
# loss = sum([loss_fn(out, target) for out, target in zip(output, target_data)]) / len(output)
|
# loss = sum([loss_fn(out, target) for out, target in zip(output, target_data)]) / len(output)
|
||||||
|
|
||||||
loss = loss_fn(output, target_data) * 85
|
loss = loss_fn(output, target_data) * layer.nr_nets
|
||||||
|
|
||||||
losses.append(loss.detach())
|
losses.append(loss.detach())
|
||||||
loss.backward()
|
loss.backward()
|
||||||
@ -311,39 +319,42 @@ def test_sparse_net():
|
|||||||
data_dim = np.prod(dataset[0][0].shape)
|
data_dim = np.prod(dataset[0][0].shape)
|
||||||
metanet = SparseNetwork(data_dim, depth=3, width=5, out=10)
|
metanet = SparseNetwork(data_dim, depth=3, width=5, out=10)
|
||||||
batchx, batchy = next(iter(d))
|
batchx, batchy = next(iter(d))
|
||||||
metanet(batchx)
|
out = metanet(batchx)
|
||||||
print(f"identity_fn after {train_iteration+1} self-train iterations: {sum([torch.allclose(out[i], Y[i], rtol=0, atol=epsilon) for i in range(net.nr_nets)])}/{net.nr_nets}")
|
|
||||||
|
result = sum([torch.allclose(out[i], batchy[i], rtol=0, atol=epsilon_error_margin) for i in range(metanet.nr_nets)])
|
||||||
|
# print(f"identity_fn after {train_iteration+1} self-train iterations: {result} /{net.nr_nets}")
|
||||||
|
|
||||||
|
|
||||||
def test_sparse_net_sef_train():
|
def test_sparse_net_sef_train():
|
||||||
net = SparseNetwork(5, 5, 6, 10)
|
sparse_metanet = SparseNetwork(15*15, 5, 6, 10).to('cuda')
|
||||||
epochs = 10000
|
init_st_store_path = Path('counter.csv')
|
||||||
df = pd.DataFrame(columns=['Epoch', 'Func Type', 'Count'])
|
optimizer = torch.optim.SGD(sparse_metanet.parameters(), lr=0.004, momentum=0.9)
|
||||||
optimizer = torch.optim.SGD(net.parameters(), lr=0.004, momentum=0.9)
|
init_st_epochs = 10000
|
||||||
for epoch in trange(epochs):
|
init_st_df = pd.DataFrame(columns=['Epoch', 'Func Type', 'Count'])
|
||||||
_ = net.combined_self_train(optimizer)
|
|
||||||
|
|
||||||
if epoch % 500 == 0:
|
for st_epoch in trange(init_st_epochs):
|
||||||
|
_ = sparse_metanet.combined_self_train(optimizer)
|
||||||
|
|
||||||
|
if st_epoch % 500 == 0:
|
||||||
counter = defaultdict(lambda: 0)
|
counter = defaultdict(lambda: 0)
|
||||||
id_functions = functionalities_test.test_for_fixpoints(counter, list(net.particles))
|
id_functions = test_for_fixpoints(counter, list(sparse_metanet.particles))
|
||||||
counter = dict(counter)
|
counter = dict(counter)
|
||||||
tqdm.write(f"identity_fn after {epoch + 1} self-train epochs: {counter}")
|
tqdm.write(f"identity_fn after {st_epoch} self-train epochs: {counter}")
|
||||||
for key, value in counter.items():
|
for key, value in counter.items():
|
||||||
df.loc[df.shape[0]] = (epoch, key, value)
|
init_st_df.loc[init_st_df.shape[0]] = (st_epoch, key, value)
|
||||||
net.reset_diverged_particles()
|
sparse_metanet.reset_diverged_particles()
|
||||||
|
|
||||||
counter = defaultdict(lambda: 0)
|
counter = defaultdict(lambda: 0)
|
||||||
id_functions = functionalities_test.test_for_fixpoints(counter, list(net.particles))
|
id_functions = test_for_fixpoints(counter, list(sparse_metanet.particles))
|
||||||
counter = dict(counter)
|
counter = dict(counter)
|
||||||
tqdm.write(f"identity_fn after {epochs} self-train epochs: {counter}")
|
tqdm.write(f"identity_fn after {init_st_epochs} self-train epochs: {counter}")
|
||||||
for key, value in counter.items():
|
for key, value in counter.items():
|
||||||
df.loc[df.shape[0]] = (epoch, key, value)
|
init_st_df.loc[init_st_df.shape[0]] = (init_st_epochs, key, value)
|
||||||
df.to_csv('counter.csv', mode='w')
|
init_st_df.to_csv(init_st_store_path, mode='w', index=False)
|
||||||
import seaborn as sns
|
|
||||||
import matplotlib.pyplot as plt
|
c = pd.read_csv(init_st_store_path)
|
||||||
c = pd.read_csv('counter.csv', index_col=0)
|
|
||||||
sns.lineplot(data=c, x='Epoch', y='Count', hue='Func Type')
|
sns.lineplot(data=c, x='Epoch', y='Count', hue='Func Type')
|
||||||
plt.savefig('counter.png', dpi=300)
|
plt.savefig(init_st_store_path, dpi=300)
|
||||||
|
|
||||||
|
|
||||||
def test_manual_for_loop():
|
def test_manual_for_loop():
|
||||||
@ -353,7 +364,7 @@ def test_manual_for_loop():
|
|||||||
rounds = 1000
|
rounds = 1000
|
||||||
|
|
||||||
for net in tqdm(nets):
|
for net in tqdm(nets):
|
||||||
optimizer = torch.optim.SGD(net.parameters(), lr=0.004, momentum=0.9)
|
optimizer = torch.optim.SGD(net.parameters(), lr=0.0001, momentum=0.9)
|
||||||
for i in range(rounds):
|
for i in range(rounds):
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
input_data = net.input_weight_matrix()
|
input_data = net.input_weight_matrix()
|
||||||
|
Reference in New Issue
Block a user