TeamWork 3>
This commit is contained in:
parent
18c84d1483
commit
7766fed5ab
@ -1,4 +1,3 @@
|
||||
import sys
|
||||
import os
|
||||
import time
|
||||
import dill
|
||||
@ -75,15 +74,19 @@ class FixpointExperiment(Experiment):
|
||||
self.counters['fix_sec'] += 1
|
||||
else:
|
||||
self.counters['other'] += 1
|
||||
|
||||
|
||||
|
||||
class MixedFixpointExperiment(FixpointExperiment):
|
||||
|
||||
def run_net(self, net, trains_per_application=100, step_limit=100):
|
||||
i = 0
|
||||
while i < step_limit and not net.is_diverged() and not net.is_fixpoint():
|
||||
net.self_attack()
|
||||
for _ in tqdm(range(trains_per_application)):
|
||||
loss = net.compiled().train()
|
||||
with tqdm(postfix=["Loss", dict(value=0)]) as bar:
|
||||
for _ in range(trains_per_application):
|
||||
loss = net.compiled().train()
|
||||
bar.postfix[1]["value"] = loss
|
||||
bar.update()
|
||||
i += 1
|
||||
self.count(net)
|
||||
|
||||
|
216
code/network.py
216
code/network.py
@ -1,9 +1,8 @@
|
||||
import math
|
||||
import copy
|
||||
import os
|
||||
import numpy as np
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
from keras.models import Sequential
|
||||
from keras.layers import SimpleRNN, Dense
|
||||
|
||||
@ -16,7 +15,7 @@ os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
||||
|
||||
class NeuralNetwork(PrintingObject):
|
||||
|
||||
@staticmethod
|
||||
@staticmethod
|
||||
def weights_to_string(weights):
|
||||
s = ""
|
||||
for layer_id, layer in enumerate(weights):
|
||||
@ -27,8 +26,8 @@ class NeuralNetwork(PrintingObject):
|
||||
s += "]"
|
||||
s += "\n"
|
||||
return s
|
||||
|
||||
@staticmethod
|
||||
|
||||
@staticmethod
|
||||
def are_weights_diverged(network_weights):
|
||||
for layer_id, layer in enumerate(network_weights):
|
||||
for cell_id, cell in enumerate(layer):
|
||||
@ -39,15 +38,15 @@ class NeuralNetwork(PrintingObject):
|
||||
return True
|
||||
return False
|
||||
|
||||
@staticmethod
|
||||
@staticmethod
|
||||
def are_weights_within(network_weights, lower_bound, upper_bound):
|
||||
for layer_id, layer in enumerate(network_weights):
|
||||
for cell_id, cell in enumerate(layer):
|
||||
for weight_id, weight in enumerate(cell):
|
||||
if not (lower_bound <= weight <= upper_bound):
|
||||
if not (lower_bound <= weight and weight <= upper_bound):
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
@staticmethod
|
||||
def fill_weights(old_weights, new_weights_list):
|
||||
new_weights = copy.deepcopy(old_weights)
|
||||
@ -59,7 +58,7 @@ class NeuralNetwork(PrintingObject):
|
||||
new_weights[layer_id][cell_id][weight_id] = new_weight
|
||||
current_weight_id += 1
|
||||
return new_weights
|
||||
|
||||
|
||||
def __init__(self, **params):
|
||||
super().__init__()
|
||||
self.model = Sequential()
|
||||
@ -69,54 +68,54 @@ class NeuralNetwork(PrintingObject):
|
||||
|
||||
def get_params(self):
|
||||
return self.params
|
||||
|
||||
|
||||
def get_keras_params(self):
|
||||
return self.keras_params
|
||||
|
||||
def with_params(self, **kwargs):
|
||||
self.params.update(kwargs)
|
||||
return self
|
||||
|
||||
|
||||
def with_keras_params(self, **kwargs):
|
||||
self.keras_params.update(kwargs)
|
||||
return self
|
||||
|
||||
|
||||
def get_model(self):
|
||||
return self.model
|
||||
|
||||
|
||||
def get_weights(self):
|
||||
return self.get_model().get_weights()
|
||||
|
||||
|
||||
def set_weights(self, new_weights):
|
||||
return self.get_model().set_weights(new_weights)
|
||||
|
||||
def apply_to_weights(self, old_weights):
|
||||
raise NotImplementedException
|
||||
raise NotImplementedError
|
||||
|
||||
def apply_to_network(self, other_network):
|
||||
new_weights = self.apply_to_weights(other_network.get_weights())
|
||||
return new_weights
|
||||
|
||||
|
||||
def attack(self, other_network):
|
||||
other_network.set_weights(self.apply_to_network(other_network))
|
||||
return self
|
||||
|
||||
|
||||
def fuck(self, other_network):
|
||||
self.set_weights(self.apply_to_network(other_network))
|
||||
return self
|
||||
|
||||
def self_attack(self, iterations=1):
|
||||
for _ in range(iterations):
|
||||
self.attack(self)
|
||||
return self
|
||||
|
||||
|
||||
def meet(self, other_network):
|
||||
new_other_network = copy.deepcopy(other_network)
|
||||
return self.attack(new_other_network)
|
||||
|
||||
def self_meet(self, iterations=1):
|
||||
new_me = copy.deepcopy(self)
|
||||
return new_me.self_attack(iterations)
|
||||
|
||||
|
||||
def is_diverged(self):
|
||||
return NeuralNetwork.are_weights_diverged(self.get_weights())
|
||||
|
||||
|
||||
def is_zero(self, epsilon=None):
|
||||
epsilon = epsilon or self.params.get('epsilon')
|
||||
return NeuralNetwork.are_weights_within(self.get_weights(), -epsilon, epsilon)
|
||||
@ -126,10 +125,10 @@ class NeuralNetwork(PrintingObject):
|
||||
epsilon = epsilon or self.get_params().get('epsilon')
|
||||
old_weights = self.get_weights()
|
||||
new_weights = copy.deepcopy(old_weights)
|
||||
|
||||
|
||||
for _ in range(degree):
|
||||
new_weights = self.apply_to_weights(new_weights)
|
||||
|
||||
|
||||
if NeuralNetwork.are_weights_diverged(new_weights):
|
||||
return False
|
||||
for layer_id, layer in enumerate(old_weights):
|
||||
@ -139,23 +138,23 @@ class NeuralNetwork(PrintingObject):
|
||||
if abs(new_weight - weight) >= epsilon:
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def repr_weights(self):
|
||||
return self.__class__.weights_to_string(self.get_weights())
|
||||
|
||||
|
||||
def print_weights(self):
|
||||
print(self.repr_weights())
|
||||
|
||||
|
||||
class WeightwiseNeuralNetwork(NeuralNetwork):
|
||||
|
||||
|
||||
@staticmethod
|
||||
def normalize_id(value, norm):
|
||||
if norm > 1:
|
||||
return float(value) / float(norm)
|
||||
else:
|
||||
return float(value)
|
||||
|
||||
|
||||
def __init__(self, width, depth, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.width = width
|
||||
@ -164,11 +163,11 @@ class WeightwiseNeuralNetwork(NeuralNetwork):
|
||||
for _ in range(self.depth-1):
|
||||
self.model.add(Dense(units=self.width, **self.keras_params))
|
||||
self.model.add(Dense(units=1, **self.keras_params))
|
||||
|
||||
|
||||
def apply(self, *inputs):
|
||||
stuff = np.transpose(np.array([[inputs[0]], [inputs[1]], [inputs[2]], [inputs[3]]]))
|
||||
return self.model.predict(stuff)[0][0]
|
||||
|
||||
|
||||
@classmethod
|
||||
def compute_all_duplex_weight_points(cls, old_weights):
|
||||
points = []
|
||||
@ -182,26 +181,25 @@ class WeightwiseNeuralNetwork(NeuralNetwork):
|
||||
normal_layer_id = cls.normalize_id(layer_id, max_layer_id)
|
||||
normal_cell_id = cls.normalize_id(cell_id, max_cell_id)
|
||||
normal_weight_id = cls.normalize_id(weight_id, max_weight_id)
|
||||
|
||||
|
||||
points += [[weight, layer_id, cell_id, weight_id]]
|
||||
normal_points += [[weight, normal_layer_id, normal_cell_id, normal_weight_id]]
|
||||
return points, normal_points
|
||||
|
||||
|
||||
@classmethod
|
||||
def compute_all_weight_points(cls, all_weights):
|
||||
return cls.compute_all_duplex_weight_points(all_weights)[0]
|
||||
|
||||
|
||||
@classmethod
|
||||
def compute_all_normal_weight_points(cls, all_weights):
|
||||
return cls.compute_all_duplex_weight_points(all_weights)[1]
|
||||
|
||||
|
||||
|
||||
def apply_to_weights(self, old_weights):
|
||||
new_weights = copy.deepcopy(self.get_weights())
|
||||
for (weight_point, normal_weight_point) in zip(*self.__class__.compute_all_duplex_weight_points(old_weights)):
|
||||
weight, layer_id, cell_id, weight_id = weight_point
|
||||
_, normal_layer_id, normal_cell_id, normal_weight_id = normal_weight_point
|
||||
|
||||
|
||||
new_weight = self.apply(*normal_weight_point)
|
||||
new_weights[layer_id][cell_id][weight_id] = new_weight
|
||||
|
||||
@ -209,23 +207,22 @@ class WeightwiseNeuralNetwork(NeuralNetwork):
|
||||
print("updated old weight {weight}\t @ ({layer},{cell},{weight_id}) "
|
||||
"to new value {new_weight}\t calling @ ({normal_layer},{normal_cell},{normal_weight_id})").format(
|
||||
weight=weight, layer=layer_id, cell=cell_id, weight_id=weight_id, new_weight=new_weight,
|
||||
normal_layer=normal_layer_id, normal_cell=normal_cell_id, normal_weight_id=normal_weight_id)
|
||||
normal_layer=normal_layer_id, normal_cell=normal_cell_id, normal_weight_id=normal_weight_id)
|
||||
return new_weights
|
||||
|
||||
|
||||
def compute_samples(self):
|
||||
samples = []
|
||||
for normal_weight_point in self.__class__.compute_all_normal_weight_points(self.get_weights()):
|
||||
weight, normal_layer_id, normal_cell_id, normal_weight_id = normal_weight_point
|
||||
|
||||
|
||||
sample = np.transpose(np.array([[weight], [normal_layer_id], [normal_cell_id], [normal_weight_id]]))
|
||||
samples += [sample[0]]
|
||||
samples_array = np.asarray(samples)
|
||||
return samples_array, samples_array[:, 0]
|
||||
|
||||
return samples_array, samples_array[:, 0]
|
||||
|
||||
|
||||
class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
|
||||
|
||||
@staticmethod
|
||||
def aggregate_average(weights):
|
||||
total = 0
|
||||
@ -234,28 +231,28 @@ class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
total += float(weight)
|
||||
count += 1
|
||||
return total / float(count)
|
||||
|
||||
|
||||
@staticmethod
|
||||
def aggregate_max(weights):
|
||||
max_found = weights[0]
|
||||
for weight in weights:
|
||||
max_found = weight > max_found and weight or max_found
|
||||
return max_found
|
||||
|
||||
|
||||
@staticmethod
|
||||
def deaggregate_identically(aggregate, amount):
|
||||
return [aggregate for _ in range(amount)]
|
||||
|
||||
|
||||
@staticmethod
|
||||
def shuffle_not(weights_list):
|
||||
return weights_list
|
||||
|
||||
|
||||
@staticmethod
|
||||
def shuffle_random(weights_list):
|
||||
import random
|
||||
random.shuffle(weights_list)
|
||||
return weights_list
|
||||
|
||||
|
||||
def __init__(self, aggregates, width, depth, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.aggregates = aggregates
|
||||
@ -265,16 +262,16 @@ class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
for _ in range(depth-1):
|
||||
self.model.add(Dense(units=width, **self.keras_params))
|
||||
self.model.add(Dense(units=self.aggregates, **self.keras_params))
|
||||
|
||||
|
||||
def get_aggregator(self):
|
||||
return self.params.get('aggregator', self.__class__.aggregate_average)
|
||||
|
||||
|
||||
def get_deaggregator(self):
|
||||
return self.params.get('deaggregator', self.__class__.deaggregate_identically)
|
||||
|
||||
|
||||
def get_shuffler(self):
|
||||
return self.params.get('shuffler', self.__class__.shuffle_not)
|
||||
|
||||
|
||||
def get_amount_of_weights(self):
|
||||
total_weights = 0
|
||||
for layer_id, layer in enumerate(self.get_weights()):
|
||||
@ -282,20 +279,20 @@ class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
for weight_id, weight in enumerate(cell):
|
||||
total_weights += 1
|
||||
return total_weights
|
||||
|
||||
|
||||
def apply(self, *inputs):
|
||||
stuff = np.transpose(np.array([[inputs[i]] for i in range(self.aggregates)]))
|
||||
return self.model.predict(stuff)[0]
|
||||
|
||||
|
||||
def apply_to_weights(self, old_weights):
|
||||
# build aggregations from old_weights
|
||||
collection_size = self.get_amount_of_weights() // self.aggregates
|
||||
collections, leftovers = self.__class__.collect_weights(old_weights, collection_size)
|
||||
|
||||
|
||||
# call network
|
||||
old_aggregations = [self.get_aggregator()(collection) for collection in collections]
|
||||
new_aggregations = self.apply(*old_aggregations)
|
||||
|
||||
|
||||
# generate list of new weights
|
||||
new_weights_list = []
|
||||
for aggregation_id, aggregation in enumerate(new_aggregations):
|
||||
@ -304,10 +301,10 @@ class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
else:
|
||||
new_weights_list += self.get_deaggregator()(aggregation, collection_size)
|
||||
new_weights_list = self.get_shuffler()(new_weights_list)
|
||||
|
||||
|
||||
# write back new weights
|
||||
new_weights = self.__class__.fill_weights(old_weights, new_weights_list)
|
||||
|
||||
|
||||
# return results
|
||||
if self.params.get("print_all_weight_updates", False) and not self.is_silent():
|
||||
print("updated old weight aggregations " + str(old_aggregations))
|
||||
@ -315,7 +312,7 @@ class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
print("resulting in network weights ...")
|
||||
print(self.__class__.weights_to_string(new_weights))
|
||||
return new_weights
|
||||
|
||||
|
||||
@staticmethod
|
||||
def collect_weights(all_weights, collection_size):
|
||||
collections = []
|
||||
@ -332,28 +329,28 @@ class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
collections[-1] += next_collection
|
||||
leftovers = len(next_collection)
|
||||
return collections, leftovers
|
||||
|
||||
|
||||
def get_collected_weights(self):
|
||||
collection_size = self.get_amount_of_weights() // self.aggregates
|
||||
return self.__class__.collect_weights(self.get_weights(), collection_size)
|
||||
|
||||
|
||||
def get_aggregated_weights(self):
|
||||
collections, leftovers = self.get_collected_weights()
|
||||
aggregations = [self.get_aggregator()(collection) for collection in collections]
|
||||
return aggregations, leftovers
|
||||
|
||||
|
||||
def compute_samples(self):
|
||||
aggregations, _ = self.get_aggregated_weights()
|
||||
sample = np.transpose(np.array([[aggregations[i]] for i in range(self.aggregates)]))
|
||||
return [sample], [sample]
|
||||
|
||||
|
||||
def is_fixpoint_after_aggregation(self, degree=1, epsilon=None):
|
||||
assert degree >= 1, "degree must be >= 1"
|
||||
epsilon = epsilon or self.get_params().get('epsilon')
|
||||
|
||||
|
||||
old_weights = self.get_weights()
|
||||
old_aggregations, _ = self.get_aggregated_weights()
|
||||
|
||||
|
||||
new_weights = copy.deepcopy(old_weights)
|
||||
for _ in range(degree):
|
||||
new_weights = self.apply_to_weights(new_weights)
|
||||
@ -362,18 +359,16 @@ class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
collection_size = self.get_amount_of_weights() // self.aggregates
|
||||
collections, leftovers = self.__class__.collect_weights(new_weights, collection_size)
|
||||
new_aggregations = [self.get_aggregator()(collection) for collection in collections]
|
||||
|
||||
for aggregation_id,old_aggregation in enumerate(old_aggregations):
|
||||
|
||||
for aggregation_id, old_aggregation in enumerate(old_aggregations):
|
||||
new_aggregation = new_aggregations[aggregation_id]
|
||||
if abs(new_aggregation - old_aggregation) >= epsilon:
|
||||
return False, new_aggregations
|
||||
return True, new_aggregations
|
||||
|
||||
|
||||
|
||||
|
||||
class RecurrentNeuralNetwork(NeuralNetwork):
|
||||
|
||||
|
||||
def __init__(self, width, depth, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.features = 1
|
||||
@ -383,11 +378,11 @@ class RecurrentNeuralNetwork(NeuralNetwork):
|
||||
for _ in range(depth-1):
|
||||
self.model.add(SimpleRNN(units=width, return_sequences=True, **self.keras_params))
|
||||
self.model.add(SimpleRNN(units=self.features, return_sequences=True, **self.keras_params))
|
||||
|
||||
|
||||
def apply(self, *inputs):
|
||||
stuff = np.transpose(np.array([[[inputs[i]] for i in range(len(inputs))]]))
|
||||
return self.model.predict(stuff)[0].flatten()
|
||||
|
||||
|
||||
def apply_to_weights(self, old_weights):
|
||||
# build list from old weights
|
||||
new_weights = copy.deepcopy(old_weights)
|
||||
@ -396,10 +391,10 @@ class RecurrentNeuralNetwork(NeuralNetwork):
|
||||
for cell_id, cell in enumerate(layer):
|
||||
for weight_id, weight in enumerate(cell):
|
||||
old_weights_list += [weight]
|
||||
|
||||
|
||||
# call network
|
||||
new_weights_list = self.apply(*old_weights_list)
|
||||
|
||||
|
||||
# write back new weights from list of rnn returns
|
||||
current_weight_id = 0
|
||||
for layer_id, layer in enumerate(new_weights):
|
||||
@ -409,7 +404,7 @@ class RecurrentNeuralNetwork(NeuralNetwork):
|
||||
new_weights[layer_id][cell_id][weight_id] = new_weight
|
||||
current_weight_id += 1
|
||||
return new_weights
|
||||
|
||||
|
||||
def compute_samples(self):
|
||||
# build list from old weights
|
||||
old_weights_list = []
|
||||
@ -417,9 +412,8 @@ class RecurrentNeuralNetwork(NeuralNetwork):
|
||||
for cell_id, cell in enumerate(layer):
|
||||
for weight_id, weight in enumerate(cell):
|
||||
old_weights_list += [weight]
|
||||
sample = np.transpose(np.array([[[old_weights_list[i]] for i in range(len(old_weights_list))]]))
|
||||
sample = np.asarray(old_weights_list)[None, ..., None]
|
||||
return sample, sample
|
||||
|
||||
|
||||
|
||||
class LearningNeuralNetwork(NeuralNetwork):
|
||||
@ -455,7 +449,7 @@ class LearningNeuralNetwork(NeuralNetwork):
|
||||
self.model.compile(**self.compile_params)
|
||||
|
||||
def apply_to_weights(self, old_weights):
|
||||
raise NotImplementedException
|
||||
raise NotImplementedError
|
||||
|
||||
def with_compile_params(self, **kwargs):
|
||||
self.compile_params.update(kwargs)
|
||||
@ -473,9 +467,8 @@ class LearningNeuralNetwork(NeuralNetwork):
|
||||
bar.update()
|
||||
|
||||
|
||||
|
||||
class TrainingNeuralNetworkDecorator(NeuralNetwork):
|
||||
|
||||
|
||||
def __init__(self, net, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.net = net
|
||||
@ -485,48 +478,54 @@ class TrainingNeuralNetworkDecorator(NeuralNetwork):
|
||||
|
||||
def get_params(self):
|
||||
return self.net.get_params()
|
||||
|
||||
|
||||
def get_keras_params(self):
|
||||
return self.net.get_keras_params()
|
||||
|
||||
|
||||
def get_compile_params(self):
|
||||
return self.net.get_compile_params()
|
||||
|
||||
|
||||
def with_params(self, **kwargs):
|
||||
self.net.with_params(**kwargs)
|
||||
return self
|
||||
|
||||
|
||||
def with_keras_params(self, **kwargs):
|
||||
self.net.with_keras_params(**kwargs)
|
||||
return self
|
||||
|
||||
|
||||
def with_compile_params(self, **kwargs):
|
||||
self.compile_params.update(kwargs)
|
||||
return self
|
||||
|
||||
|
||||
def get_model(self):
|
||||
return self.net.get_model()
|
||||
|
||||
|
||||
def apply_to_weights(self, old_weights):
|
||||
return self.net.apply_to_weights(old_weights)
|
||||
|
||||
|
||||
def compile_model(self, **kwargs):
|
||||
compile_params = copy.deepcopy(self.compile_params)
|
||||
compile_params.update(kwargs)
|
||||
return self.get_model().compile(**compile_params)
|
||||
|
||||
|
||||
def compiled(self, **kwargs):
|
||||
if not self.model_compiled:
|
||||
self.compile_model(**kwargs)
|
||||
self.model_compiled = True
|
||||
return self
|
||||
|
||||
|
||||
def train(self, batchsize=1):
|
||||
self.compiled()
|
||||
x, y = self.net.compute_samples()
|
||||
history = self.net.model.fit(x=x, y=y, verbose=0, batch_size=batchsize)
|
||||
return history.history['loss'][-1]
|
||||
|
||||
|
||||
def train_other(self, other_network, batchsize=1):
|
||||
self.compiled()
|
||||
other_network.compiled()
|
||||
x, y = other_network.net.compute_samples()
|
||||
history = self.net.model.fit(x=x, y=y, verbose=0, batch_size=batchsize)
|
||||
return history.history['loss'][-1]
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
@ -544,7 +543,8 @@ if __name__ == '__main__':
|
||||
exp.run_net(net, 100)
|
||||
exp.log(exp.counters)
|
||||
|
||||
if False: # is_fixpoint was wrong because it trivially returned the old weights
|
||||
if False:
|
||||
# is_fixpoint was wrong because it trivially returned the old weights
|
||||
with IdentLearningExperiment() as exp:
|
||||
net = LearningNeuralNetwork(width=2, depth=2, features=2, )\
|
||||
.with_keras_params(activation='sigmoid', use_bias=False, ) \
|
||||
@ -559,10 +559,12 @@ if __name__ == '__main__':
|
||||
net.print_weights()
|
||||
time.sleep(1)
|
||||
print(net.is_fixpoint(epsilon=0.1e-6))
|
||||
if False: # ok so this works quite realiably
|
||||
if False:
|
||||
# ok so this works quite realiably
|
||||
with FixpointExperiment() as exp:
|
||||
run_count = 1000
|
||||
net = TrainingNeuralNetworkDecorator(WeightwiseNeuralNetwork(width=2, depth=2)).with_params(epsilon=0.0001)
|
||||
net = TrainingNeuralNetworkDecorator(WeightwiseNeuralNetwork(width=2, depth=2))\
|
||||
.with_params(epsilon=0.0001).with_keras_params(optimizer='sgd')
|
||||
for run_id in tqdm(range(run_count+1)):
|
||||
loss = net.compiled().train()
|
||||
if run_id % 100 == 0:
|
||||
@ -571,7 +573,9 @@ if __name__ == '__main__':
|
||||
print("Fixpoint? " + str(net.is_fixpoint()))
|
||||
print("Loss " + str(loss))
|
||||
print()
|
||||
if True: # this does not work as the aggregation function screws over the fixpoint computation.... TODO: check for fixpoint in aggregated space...
|
||||
if False:
|
||||
# this does not work as the aggregation function screws over the fixpoint computation....
|
||||
# TODO: check for fixpoint in aggregated space...
|
||||
with FixpointExperiment() as exp:
|
||||
run_count = 1000
|
||||
net = TrainingNeuralNetworkDecorator(AggregatingNeuralNetwork(4, width=2, depth=2)).with_params(epsilon=0.1e-6)
|
||||
@ -587,22 +591,28 @@ if __name__ == '__main__':
|
||||
print("Fixpoint after Agg? " + str(fp))
|
||||
print("Loss " + str(loss))
|
||||
print()
|
||||
if False: # this explodes in our faces completely... NAN everywhere TODO: Wtf is happening here?
|
||||
if False:
|
||||
# this explodes in our faces completely... NAN everywhere
|
||||
# TODO: Wtf is happening here?
|
||||
with FixpointExperiment() as exp:
|
||||
run_count = 10
|
||||
net = TrainingNeuralNetworkDecorator(RecurrentNeuralNetwork(width=2, depth=2)).with_params(epsilon=0.1e-6)
|
||||
run_count = 10000
|
||||
net = TrainingNeuralNetworkDecorator(RecurrentNeuralNetwork(width=2, depth=2))\
|
||||
.with_params(epsilon=0.1e-2).with_keras_params(optimizer='sgd', activation='linear')
|
||||
for run_id in tqdm(range(run_count+1)):
|
||||
loss = net.compiled().train()
|
||||
if run_id % 1 == 0:
|
||||
if run_id % 500 == 0:
|
||||
net.print_weights()
|
||||
# print(net.apply_to_network(net))
|
||||
print("Fixpoint? " + str(net.is_fixpoint(epsilon=0.0001)))
|
||||
print("Fixpoint? " + str(net.is_fixpoint()))
|
||||
print("Loss " + str(loss))
|
||||
print()
|
||||
if False: # and this gets somewhat interesting... we can still achieve non-trivial fixpoints over multiple applications when training enough in-between
|
||||
if True:
|
||||
# and this gets somewhat interesting... we can still achieve non-trivial fixpoints
|
||||
# over multiple applications when training enough in-between
|
||||
with MixedFixpointExperiment() as exp:
|
||||
for run_id in range(1):
|
||||
net = TrainingNeuralNetworkDecorator(WeightwiseNeuralNetwork(width=2, depth=2)).with_params(epsilon=0.0001)
|
||||
net = TrainingNeuralNetworkDecorator(WeightwiseNeuralNetwork(width=2, depth=2))\
|
||||
.with_params(epsilon=0.0001)
|
||||
exp.run_net(net, 500, 10)
|
||||
net.print_weights()
|
||||
print("Fixpoint? " + str(net.is_fixpoint()))
|
||||
|
63
code/soup.py
63
code/soup.py
@ -1,19 +1,23 @@
|
||||
import random
|
||||
import copy
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
from experiment import *
|
||||
from network import *
|
||||
|
||||
|
||||
def prng():
|
||||
return random.random()
|
||||
|
||||
|
||||
class Soup:
|
||||
|
||||
def __init__(self, size, generator, **kwargs):
|
||||
self.size = size
|
||||
self.generator = generator
|
||||
self.particles = []
|
||||
self.params = dict(meeting_rate=0.1)
|
||||
self.params = dict(meeting_rate=0.1, train_other_rate=0.1, train=0)
|
||||
self.params.update(kwargs)
|
||||
|
||||
def with_params(self, **kwargs):
|
||||
@ -28,17 +32,25 @@ class Soup:
|
||||
|
||||
def evolve(self, iterations=1):
|
||||
for _ in range(iterations):
|
||||
for particle_id,particle in enumerate(self.particles):
|
||||
for particle_id, particle in enumerate(self.particles):
|
||||
if prng() < self.params.get('meeting_rate'):
|
||||
other_particle_id = int(prng() * len(self.particles))
|
||||
other_particle = self.particles[other_particle_id]
|
||||
particle.attack(other_particle)
|
||||
if prng() < self.params.get('train_other_rate'):
|
||||
other_particle_id = int(prng() * len(self.particles))
|
||||
other_particle = self.particles[other_particle_id]
|
||||
particle.train_other(other_particle)
|
||||
try:
|
||||
for _ in range(self.params.get('train', 0)):
|
||||
particle.compiled().train()
|
||||
except AttributeError:
|
||||
pass
|
||||
if self.params.get('remove_divergent') and particle.is_diverged():
|
||||
self.particles[particle_id] = self.generator()
|
||||
if self.params.get('remove_zero') and particle.is_zero():
|
||||
self.particles[particle_id] = self.generator()
|
||||
|
||||
|
||||
def count(self):
|
||||
counters = dict(divergent=0, fix_zero=0, fix_other=0, fix_sec=0, other=0)
|
||||
for particle in self.particles:
|
||||
@ -54,16 +66,39 @@ class Soup:
|
||||
else:
|
||||
counters['other'] += 1
|
||||
return counters
|
||||
|
||||
|
||||
|
||||
class LearningSoup(Soup):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(LearningSoup, self).__init__(**kwargs)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
with SoupExperiment() as exp:
|
||||
for run_id in range(1):
|
||||
net_generator = lambda: WeightwiseNeuralNetwork(2, 2).with_keras_params(activation='sigmoid').with_params()
|
||||
# net_generator = lambda: AggregatingNeuralNetwork(4, 2, 2).with_keras_params(activation='sigmoid').with_params(shuffler=AggregatingNeuralNetwork.shuffle_random)
|
||||
# net_generator = lambda: RecurrentNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()
|
||||
soup = Soup(100, net_generator).with_params(remove_divergent=True, remove_zero=True)
|
||||
soup.seed()
|
||||
for _ in tqdm(range(100)):
|
||||
soup.evolve()
|
||||
exp.log(soup.count())
|
||||
if False:
|
||||
with SoupExperiment() as exp:
|
||||
for run_id in range(1):
|
||||
net_generator = lambda: WeightwiseNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()
|
||||
# net_generator = lambda: AggregatingNeuralNetwork(4, 2, 2).with_keras_params(activation='sigmoid')\
|
||||
# .with_params(shuffler=AggregatingNeuralNetwork.shuffle_random)
|
||||
# net_generator = lambda: RecurrentNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()
|
||||
soup = Soup(100, net_generator).with_params(remove_divergent=True, remove_zero=True)
|
||||
soup.seed()
|
||||
for _ in tqdm(range(100)):
|
||||
soup.evolve()
|
||||
exp.log(soup.count())
|
||||
|
||||
if True:
|
||||
with SoupExperiment() as exp:
|
||||
for run_id in range(1):
|
||||
net_generator = lambda: TrainingNeuralNetworkDecorator(WeightwiseNeuralNetwork(2, 2)).with_keras_params(
|
||||
activation='linear')
|
||||
# net_generator = lambda: AggregatingNeuralNetwork(4, 2, 2).with_keras_params(activation='sigmoid')\
|
||||
# .with_params(shuffler=AggregatingNeuralNetwork.shuffle_random)
|
||||
# net_generator = lambda: RecurrentNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()
|
||||
soup = Soup(10, net_generator).with_params(remove_divergent=True, remove_zero=True).with_params(train=500)
|
||||
soup.seed()
|
||||
for _ in tqdm(range(10)):
|
||||
soup.evolve()
|
||||
exp.log(soup.count())
|
||||
|
||||
|
@ -114,7 +114,6 @@ def compile_run_name(path: str) -> dict:
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
raise NotImplementedError()
|
||||
args = build_args()
|
||||
in_file = args.in_file[0]
|
||||
out_file = args.out_file
|
||||
|
Loading…
x
Reference in New Issue
Block a user