Readme Update und Residuals GN Training
This commit is contained in:
		| @@ -31,10 +31,15 @@ | ||||
|  | ||||
| ### Tasks für Steffen: | ||||
|  | ||||
| - [ ] Training mit kleineren GNs -| Running | ||||
| - [x] Training mit kleineren GNs | ||||
|   - Accuracy leidet enorm (_0.56_) | ||||
|      | ||||
|   - Es entstehen mehr SRNN | ||||
|   - Der Dropout Effekt wird stärker (diff_ohne_SRNN = _0.0_) | ||||
|      | ||||
| - [ ] Weiter Trainieren -> 500 Epochs? | ||||
| - [ ] Loss Gewichtung anpassen | ||||
| - [ ] Training ohne Residual Skip Connection | ||||
| - [ ] Training ohne Residual Skip Connection | - Running | ||||
| - [ ] Test mit Baseline Dense Network  | ||||
|   - [ ] mit vergleichbaren Neuron Count | ||||
|   - [ ] mit gesamt Weight Count | ||||
|   | ||||
| @@ -133,7 +133,7 @@ def checkpoint_and_validate(model, out_path, epoch_n, final_model=False): | ||||
|  | ||||
| def plot_training_result(path_to_dataframe): | ||||
|     # load from Drive | ||||
|     df = pd.read_csv(path_to_dataframe, index_col=0) | ||||
|     df = pd.read_csv(path_to_dataframe, index_col=False) | ||||
|  | ||||
|     # Set up figure | ||||
|     fig, ax1 = plt.subplots()  # initializes figure and plots | ||||
| @@ -163,6 +163,9 @@ def plot_training_result(path_to_dataframe): | ||||
|     else: | ||||
|         plt.savefig(Path(path_to_dataframe.parent / 'training_lineplot.png'), dpi=300) | ||||
|  | ||||
| def flat_for_store(parameters): | ||||
|     return (x.item() for y in parameters for x in y.detach().flatten()) | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|  | ||||
| @@ -175,7 +178,7 @@ if __name__ == '__main__': | ||||
|     data_path = Path('data') | ||||
|     data_path.mkdir(exist_ok=True, parents=True) | ||||
|  | ||||
|     run_path = Path('output') / 'mn_st_smaller' | ||||
|     run_path = Path('output') / 'mn_st_NoRes' | ||||
|     model_path = run_path / '0000_trained_model.zip' | ||||
|     df_store_path = run_path / 'train_store.csv' | ||||
|     weight_store_path = run_path / 'weight_store.csv' | ||||
| @@ -189,14 +192,14 @@ if __name__ == '__main__': | ||||
|         d = DataLoader(dataset, batch_size=BATCHSIZE, shuffle=True, drop_last=True, num_workers=WORKER) | ||||
|  | ||||
|         interface = np.prod(dataset[0][0].shape) | ||||
|         metanet = MetaNet(interface, depth=5, width=6, out=10).to(DEVICE) | ||||
|         metanet = MetaNet(interface, depth=5, width=6, out=10, residual_skip=False).to(DEVICE) | ||||
|         meta_weight_count = sum(p.numel() for p in next(metanet.particles).parameters()) | ||||
|  | ||||
|         loss_fn = nn.CrossEntropyLoss() | ||||
|         optimizer = torch.optim.SGD(metanet.parameters(), lr=0.008, momentum=0.9) | ||||
|  | ||||
|         train_store = new_storage_df('train', None) | ||||
|         weight_store = new_storage_df('train', meta_weight_count) | ||||
|         weight_store = new_storage_df('weights', meta_weight_count) | ||||
|         for epoch in tqdm(range(EPOCH), desc='MetaNet Train - Epochs'): | ||||
|             is_validation_epoch = epoch % VALIDATION_FRQ == 0 if not debug else True | ||||
|             is_self_train_epoch = epoch % SELF_TRAIN_FRQ == 0 if not debug else True | ||||
| @@ -254,29 +257,30 @@ if __name__ == '__main__': | ||||
|                         step_log = dict(Epoch=int(epoch), Batch=BATCHSIZE, Metric=key, Score=value) | ||||
|                         train_store.loc[train_store.shape[0]] = step_log | ||||
|                 for particle in metanet.particles: | ||||
|                     weight_log = (epoch, particle.name, *(x for y in particle.parameters() for x in y)) | ||||
|                 train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists()) | ||||
|                 weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists()) | ||||
|                     weight_log = (epoch, particle.name, *flat_for_store(particle.parameters())) | ||||
|                     weight_store.loc[weight_store.shape[0]] = weight_log | ||||
|                 train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists(), index=False) | ||||
|                 weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists(), index=False) | ||||
|                 train_store = new_storage_df('train', None) | ||||
|                 weight_store = new_storage_df('train', meta_weight_count) | ||||
|                 weight_store = new_storage_df('weights', meta_weight_count) | ||||
|  | ||||
|         metanet.eval() | ||||
|         accuracy = checkpoint_and_validate(metanet, run_path, EPOCH, final_model=True) | ||||
|         validation_log = dict(Epoch=EPOCH, Batch=BATCHSIZE, | ||||
|                               Metric='Test Accuracy', Score=accuracy.item()) | ||||
|         for particle in metanet.particles: | ||||
|             weight_log = (EPOCH, particle.name, *(x for y in particle.parameters() for x in y)) | ||||
|             weight_log = (EPOCH, particle.name, *(flat_for_store(particle.parameters()))) | ||||
|             weight_store.loc[weight_store.shape[0]] = weight_log | ||||
|  | ||||
|         train_store.loc[train_store.shape[0]] = validation_log | ||||
|         train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists()) | ||||
|         weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists()) | ||||
|         train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists(), index=False) | ||||
|         weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists(), index=False) | ||||
|  | ||||
|     if plotting: | ||||
|         plot_training_result(df_store_path) | ||||
|  | ||||
|     if particle_analysis: | ||||
|         model_path = next(run_path.glob(f'*e{EPOCH}.tp')) | ||||
|         model_path = next(run_path.glob(f'*e100.tp')) | ||||
|         latest_model = torch.load(model_path, map_location=DEVICE).eval() | ||||
|         counter_dict = defaultdict(lambda: 0) | ||||
|         _ = test_for_fixpoints(counter_dict, list(latest_model.particles)) | ||||
| @@ -284,10 +288,38 @@ if __name__ == '__main__': | ||||
|         zero_ident = torch.load(model_path, map_location=DEVICE).eval().replace_with_zero('identity_func') | ||||
|         zero_other = torch.load(model_path, map_location=DEVICE).eval().replace_with_zero('other_func') | ||||
|         if as_sparse_network_test: | ||||
|             acc_pre = validate(model_path, ratio=1) | ||||
|             acc_pre = validate(model_path, ratio=0.01).item() | ||||
|             ident_ckpt = set_checkpoint(zero_ident, model_path.parent, -1, final_model=True) | ||||
|             ident_acc_post = validate(ident_ckpt, ratio=1) | ||||
|             ident_acc_post = validate(ident_ckpt, ratio=0.01).item() | ||||
|             tqdm.write(f'Zero_ident diff = {abs(ident_acc_post-acc_pre)}') | ||||
|             other_ckpt = set_checkpoint(zero_other, model_path.parent, -2, final_model=True) | ||||
|             other_acc_post = validate(other_ckpt, ratio=1) | ||||
|             other_acc_post = validate(other_ckpt, ratio=0.01).item() | ||||
|             tqdm.write(f'Zero_other diff = {abs(other_acc_post - acc_pre)}') | ||||
|  | ||||
|             if plotting: | ||||
|                 plt.clf() | ||||
|                 fig, ax = plt.subplots(ncols=2) | ||||
|                 data = [acc_pre, ident_acc_post, other_acc_post] | ||||
|                 labels = ['Full Network', 'Sparse, No Identity', 'Sparse, No Other'] | ||||
|                 for idx, (score, name) in enumerate(zip(data, labels)): | ||||
|                     l = sns.barplot(y=[score], x=['Networks'], color=sns.color_palette()[idx], label=name, ax=ax[0]) | ||||
|                 # noinspection PyUnboundLocalVariable | ||||
|                 for idx, patch in enumerate(l.patches): | ||||
|                     if idx != 0: | ||||
|                         # we recenter the bar | ||||
|                         patch.set_x(patch.get_x() + idx * 0.035) | ||||
|  | ||||
|                 ax[0].set_title('Accuracy after particle dropout') | ||||
|                 ax[0].set_xlabel('Accuracy') | ||||
|                 # ax[0].legend() | ||||
|  | ||||
|                 counter_dict['full_network'] = sum(counter_dict.values()) | ||||
|                 ax[1].pie(counter_dict.values(), labels=counter_dict.keys(), colors=sns.color_palette()[:3], ) | ||||
|                 ax[1].set_title('Particle Count for ') | ||||
|                 # ax[1].set_xlabel('') | ||||
|  | ||||
|                 plt.tight_layout() | ||||
|                 if debug: | ||||
|                     plt.show() | ||||
|                 else: | ||||
|                     plt.savefig(Path(run_path / 'dropout_stacked_barplot.png'), dpi=300) | ||||
|   | ||||
							
								
								
									
										10
									
								
								network.py
									
									
									
									
									
								
							
							
						
						
									
										10
									
								
								network.py
									
									
									
									
									
								
							| @@ -296,7 +296,7 @@ class MetaCell(nn.Module): | ||||
|         self.name = name | ||||
|         self.interface = interface | ||||
|         self.weight_interface = 5 | ||||
|         self.net_hidden_size = 3 | ||||
|         self.net_hidden_size = 4 | ||||
|         self.net_ouput_size = 1 | ||||
|         self.meta_weight_list = nn.ModuleList() | ||||
|         self.meta_weight_list.extend( | ||||
| @@ -371,7 +371,7 @@ class MetaLayer(nn.Module): | ||||
|  | ||||
| class MetaNet(nn.Module): | ||||
|  | ||||
|     def __init__(self, interface=4, depth=3, width=4, out=1, activation=None): | ||||
|     def __init__(self, interface=4, depth=3, width=4, out=1, activation=None, residual_skip=True): | ||||
|         super().__init__() | ||||
|         self.activation = activation | ||||
|         self.out = out | ||||
| @@ -382,14 +382,14 @@ class MetaNet(nn.Module): | ||||
|         self._meta_layer_list = nn.ModuleList() | ||||
|         self._meta_layer_list.append(MetaLayer(name=f'L{0}', | ||||
|                                                interface=self.interface, | ||||
|                                                width=self.width) | ||||
|                                                width=self.width, residual_skip=residual_skip) | ||||
|                                      ) | ||||
|         self._meta_layer_list.extend([MetaLayer(name=f'L{layer_idx + 1}', | ||||
|                                                 interface=self.width, width=self.width | ||||
|                                                 interface=self.width, width=self.width, residual_skip=residual_skip | ||||
|                                                 ) for layer_idx in range(self.depth - 2)] | ||||
|                                      ) | ||||
|         self._meta_layer_list.append(MetaLayer(name=f'L{len(self._meta_layer_list)}', | ||||
|                                                interface=self.width, width=self.out) | ||||
|                                                interface=self.width, width=self.out, residual_skip=residual_skip) | ||||
|                                      ) | ||||
|  | ||||
|     def replace_with_zero(self, ident_key): | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Steffen Illium
					Steffen Illium