Readme Update und Residuals GN Training
This commit is contained in:
parent
3fe4f49bca
commit
6b1efd0c49
@ -31,10 +31,15 @@
|
||||
|
||||
### Tasks für Steffen:
|
||||
|
||||
- [ ] Training mit kleineren GNs -| Running
|
||||
- [x] Training mit kleineren GNs
|
||||
- Accuracy leidet enorm (_0.56_)
|
||||

|
||||
- Es entstehen mehr SRNN
|
||||
- Der Dropout Effekt wird stärker (diff_ohne_SRNN = _0.0_)
|
||||

|
||||
- [ ] Weiter Trainieren -> 500 Epochs?
|
||||
- [ ] Loss Gewichtung anpassen
|
||||
- [ ] Training ohne Residual Skip Connection
|
||||
- [ ] Training ohne Residual Skip Connection | - Running
|
||||
- [ ] Test mit Baseline Dense Network
|
||||
- [ ] mit vergleichbaren Neuron Count
|
||||
- [ ] mit gesamt Weight Count
|
||||
|
@ -133,7 +133,7 @@ def checkpoint_and_validate(model, out_path, epoch_n, final_model=False):
|
||||
|
||||
def plot_training_result(path_to_dataframe):
|
||||
# load from Drive
|
||||
df = pd.read_csv(path_to_dataframe, index_col=0)
|
||||
df = pd.read_csv(path_to_dataframe, index_col=False)
|
||||
|
||||
# Set up figure
|
||||
fig, ax1 = plt.subplots() # initializes figure and plots
|
||||
@ -163,6 +163,9 @@ def plot_training_result(path_to_dataframe):
|
||||
else:
|
||||
plt.savefig(Path(path_to_dataframe.parent / 'training_lineplot.png'), dpi=300)
|
||||
|
||||
def flat_for_store(parameters):
|
||||
return (x.item() for y in parameters for x in y.detach().flatten())
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
@ -175,7 +178,7 @@ if __name__ == '__main__':
|
||||
data_path = Path('data')
|
||||
data_path.mkdir(exist_ok=True, parents=True)
|
||||
|
||||
run_path = Path('output') / 'mn_st_smaller'
|
||||
run_path = Path('output') / 'mn_st_NoRes'
|
||||
model_path = run_path / '0000_trained_model.zip'
|
||||
df_store_path = run_path / 'train_store.csv'
|
||||
weight_store_path = run_path / 'weight_store.csv'
|
||||
@ -189,14 +192,14 @@ if __name__ == '__main__':
|
||||
d = DataLoader(dataset, batch_size=BATCHSIZE, shuffle=True, drop_last=True, num_workers=WORKER)
|
||||
|
||||
interface = np.prod(dataset[0][0].shape)
|
||||
metanet = MetaNet(interface, depth=5, width=6, out=10).to(DEVICE)
|
||||
metanet = MetaNet(interface, depth=5, width=6, out=10, residual_skip=False).to(DEVICE)
|
||||
meta_weight_count = sum(p.numel() for p in next(metanet.particles).parameters())
|
||||
|
||||
loss_fn = nn.CrossEntropyLoss()
|
||||
optimizer = torch.optim.SGD(metanet.parameters(), lr=0.008, momentum=0.9)
|
||||
|
||||
train_store = new_storage_df('train', None)
|
||||
weight_store = new_storage_df('train', meta_weight_count)
|
||||
weight_store = new_storage_df('weights', meta_weight_count)
|
||||
for epoch in tqdm(range(EPOCH), desc='MetaNet Train - Epochs'):
|
||||
is_validation_epoch = epoch % VALIDATION_FRQ == 0 if not debug else True
|
||||
is_self_train_epoch = epoch % SELF_TRAIN_FRQ == 0 if not debug else True
|
||||
@ -254,29 +257,30 @@ if __name__ == '__main__':
|
||||
step_log = dict(Epoch=int(epoch), Batch=BATCHSIZE, Metric=key, Score=value)
|
||||
train_store.loc[train_store.shape[0]] = step_log
|
||||
for particle in metanet.particles:
|
||||
weight_log = (epoch, particle.name, *(x for y in particle.parameters() for x in y))
|
||||
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists())
|
||||
weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists())
|
||||
weight_log = (epoch, particle.name, *flat_for_store(particle.parameters()))
|
||||
weight_store.loc[weight_store.shape[0]] = weight_log
|
||||
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists(), index=False)
|
||||
weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists(), index=False)
|
||||
train_store = new_storage_df('train', None)
|
||||
weight_store = new_storage_df('train', meta_weight_count)
|
||||
weight_store = new_storage_df('weights', meta_weight_count)
|
||||
|
||||
metanet.eval()
|
||||
accuracy = checkpoint_and_validate(metanet, run_path, EPOCH, final_model=True)
|
||||
validation_log = dict(Epoch=EPOCH, Batch=BATCHSIZE,
|
||||
Metric='Test Accuracy', Score=accuracy.item())
|
||||
for particle in metanet.particles:
|
||||
weight_log = (EPOCH, particle.name, *(x for y in particle.parameters() for x in y))
|
||||
weight_log = (EPOCH, particle.name, *(flat_for_store(particle.parameters())))
|
||||
weight_store.loc[weight_store.shape[0]] = weight_log
|
||||
|
||||
train_store.loc[train_store.shape[0]] = validation_log
|
||||
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists())
|
||||
weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists())
|
||||
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists(), index=False)
|
||||
weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists(), index=False)
|
||||
|
||||
if plotting:
|
||||
plot_training_result(df_store_path)
|
||||
|
||||
if particle_analysis:
|
||||
model_path = next(run_path.glob(f'*e{EPOCH}.tp'))
|
||||
model_path = next(run_path.glob(f'*e100.tp'))
|
||||
latest_model = torch.load(model_path, map_location=DEVICE).eval()
|
||||
counter_dict = defaultdict(lambda: 0)
|
||||
_ = test_for_fixpoints(counter_dict, list(latest_model.particles))
|
||||
@ -284,10 +288,38 @@ if __name__ == '__main__':
|
||||
zero_ident = torch.load(model_path, map_location=DEVICE).eval().replace_with_zero('identity_func')
|
||||
zero_other = torch.load(model_path, map_location=DEVICE).eval().replace_with_zero('other_func')
|
||||
if as_sparse_network_test:
|
||||
acc_pre = validate(model_path, ratio=1)
|
||||
acc_pre = validate(model_path, ratio=0.01).item()
|
||||
ident_ckpt = set_checkpoint(zero_ident, model_path.parent, -1, final_model=True)
|
||||
ident_acc_post = validate(ident_ckpt, ratio=1)
|
||||
ident_acc_post = validate(ident_ckpt, ratio=0.01).item()
|
||||
tqdm.write(f'Zero_ident diff = {abs(ident_acc_post-acc_pre)}')
|
||||
other_ckpt = set_checkpoint(zero_other, model_path.parent, -2, final_model=True)
|
||||
other_acc_post = validate(other_ckpt, ratio=1)
|
||||
other_acc_post = validate(other_ckpt, ratio=0.01).item()
|
||||
tqdm.write(f'Zero_other diff = {abs(other_acc_post - acc_pre)}')
|
||||
|
||||
if plotting:
|
||||
plt.clf()
|
||||
fig, ax = plt.subplots(ncols=2)
|
||||
data = [acc_pre, ident_acc_post, other_acc_post]
|
||||
labels = ['Full Network', 'Sparse, No Identity', 'Sparse, No Other']
|
||||
for idx, (score, name) in enumerate(zip(data, labels)):
|
||||
l = sns.barplot(y=[score], x=['Networks'], color=sns.color_palette()[idx], label=name, ax=ax[0])
|
||||
# noinspection PyUnboundLocalVariable
|
||||
for idx, patch in enumerate(l.patches):
|
||||
if idx != 0:
|
||||
# we recenter the bar
|
||||
patch.set_x(patch.get_x() + idx * 0.035)
|
||||
|
||||
ax[0].set_title('Accuracy after particle dropout')
|
||||
ax[0].set_xlabel('Accuracy')
|
||||
# ax[0].legend()
|
||||
|
||||
counter_dict['full_network'] = sum(counter_dict.values())
|
||||
ax[1].pie(counter_dict.values(), labels=counter_dict.keys(), colors=sns.color_palette()[:3], )
|
||||
ax[1].set_title('Particle Count for ')
|
||||
# ax[1].set_xlabel('')
|
||||
|
||||
plt.tight_layout()
|
||||
if debug:
|
||||
plt.show()
|
||||
else:
|
||||
plt.savefig(Path(run_path / 'dropout_stacked_barplot.png'), dpi=300)
|
||||
|
10
network.py
10
network.py
@ -296,7 +296,7 @@ class MetaCell(nn.Module):
|
||||
self.name = name
|
||||
self.interface = interface
|
||||
self.weight_interface = 5
|
||||
self.net_hidden_size = 3
|
||||
self.net_hidden_size = 4
|
||||
self.net_ouput_size = 1
|
||||
self.meta_weight_list = nn.ModuleList()
|
||||
self.meta_weight_list.extend(
|
||||
@ -371,7 +371,7 @@ class MetaLayer(nn.Module):
|
||||
|
||||
class MetaNet(nn.Module):
|
||||
|
||||
def __init__(self, interface=4, depth=3, width=4, out=1, activation=None):
|
||||
def __init__(self, interface=4, depth=3, width=4, out=1, activation=None, residual_skip=True):
|
||||
super().__init__()
|
||||
self.activation = activation
|
||||
self.out = out
|
||||
@ -382,14 +382,14 @@ class MetaNet(nn.Module):
|
||||
self._meta_layer_list = nn.ModuleList()
|
||||
self._meta_layer_list.append(MetaLayer(name=f'L{0}',
|
||||
interface=self.interface,
|
||||
width=self.width)
|
||||
width=self.width, residual_skip=residual_skip)
|
||||
)
|
||||
self._meta_layer_list.extend([MetaLayer(name=f'L{layer_idx + 1}',
|
||||
interface=self.width, width=self.width
|
||||
interface=self.width, width=self.width, residual_skip=residual_skip
|
||||
) for layer_idx in range(self.depth - 2)]
|
||||
)
|
||||
self._meta_layer_list.append(MetaLayer(name=f'L{len(self._meta_layer_list)}',
|
||||
interface=self.width, width=self.out)
|
||||
interface=self.width, width=self.out, residual_skip=residual_skip)
|
||||
)
|
||||
|
||||
def replace_with_zero(self, ident_key):
|
||||
|
Loading…
x
Reference in New Issue
Block a user