Journal TEx Text

This commit is contained in:
Steffen Illium
2021-09-13 16:04:48 +02:00
parent 6c1a964f31
commit 5f6c658068
7 changed files with 109 additions and 30 deletions

View File

@@ -63,6 +63,23 @@ class SoupExperiment:
net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name)
self.population.append(net)
def population_self_train(self):
# Self-training each network in the population
for j in range(self.population_size):
net = self.population[j]
for _ in range(self.ST_steps):
net.self_train(1, self.log_step_size, self.net_learning_rate)
def population_attack(self):
# A network attacking another network with a given percentage
if random.randint(1, 100) <= self.attack_chance:
random_net1, random_net2 = random.sample(range(self.population_size), 2)
random_net1 = self.population[random_net1]
random_net2 = self.population[random_net2]
print(f"\n Attack: {random_net1.name} -> {random_net2.name}")
random_net1.attack(random_net2)
def evolve(self):
""" Evolving consists of attacking & self-training. """
@@ -71,19 +88,10 @@ class SoupExperiment:
loop_epochs.set_description("Evolving soup %s" % i)
# A network attacking another network with a given percentage
if random.randint(1, 100) <= self.attack_chance:
random_net1, random_net2 = random.sample(range(self.population_size), 2)
random_net1 = self.population[random_net1]
random_net2 = self.population[random_net2]
print(f"\n Attack: {random_net1.name} -> {random_net2.name}")
random_net1.attack(random_net2)
self.population_attack()
# Self-training each network in the population
for j in range(self.population_size):
net = self.population[j]
for _ in range(self.ST_steps):
net.self_train(1, self.log_step_size, self.net_learning_rate)
self.population_self_train()
# Testing for fixpoints after each batch of ST steps to see relevant data
if i % self.ST_steps == 0:

View File

@@ -0,0 +1,50 @@
import random
from tqdm import tqdm
from experiments.soup_exp import SoupExperiment
from functionalities_test import test_for_fixpoints
class MeltingSoupExperiment(SoupExperiment):
def __init__(self, melt_chance, *args, keep_population_size=True, **kwargs):
super(MeltingSoupExperiment, self).__init__(*args, **kwargs)
self.keep_population_size = keep_population_size
self.melt_chance = melt_chance
def population_melt(self):
# A network melting with another network by a given percentage
if random.randint(1, 100) <= self.melt_chance:
random_net1_idx, random_net2_idx, destroy_idx = random.sample(range(self.population_size), 3)
random_net1 = self.population[random_net1_idx]
random_net2 = self.population[random_net2_idx]
print(f"\n Melt: {random_net1.name} -> {random_net2.name}")
melted_network = random_net1.melt(random_net2)
if self.keep_population_size:
del self.population[destroy_idx]
self.population.append(melted_network)
def evolve(self):
""" Evolving consists of attacking, melting & self-training. """
loop_epochs = tqdm(range(self.epochs))
for i in loop_epochs:
loop_epochs.set_description("Evolving soup %s" % i)
self.population_attack()
self.population_melt()
self.population_self_train()
# Testing for fixpoints after each batch of ST steps to see relevant data
if i % self.ST_steps == 0:
test_for_fixpoints(self.fixpoint_counters, self.population)
fixpoints_percentage = round(self.fixpoint_counters["identity_func"] / self.population_size, 1)
self.fixpoint_counters_history.append(fixpoints_percentage)
# Resetting the fixpoint counter. Last iteration not to be reset -
# it is important for the bar_chart_fixpoints().
if i < self.epochs:
self.reset_fixpoint_counters()