journal_robustness.py redone, now is sensitive to seeds and plots

This commit is contained in:
steffen-illium
2021-05-23 15:49:48 +02:00
parent 55bdd706b6
commit 5e5511caf8
2 changed files with 10 additions and 8 deletions

View File

@ -9,10 +9,7 @@ import numpy as np
from pathlib import Path
from tqdm import tqdm
from tabulate import tabulate
from sklearn.metrics import mean_absolute_error as MAE
from sklearn.metrics import mean_squared_error as MSE
from journal_basins import mean_invariate_manhattan_distance as MIM
from functionalities_test import is_identity_function, is_zero_fixpoint, test_for_fixpoints, is_divergent
from network import Net
from torch.nn import functional as F
@ -153,7 +150,11 @@ class RobustnessComparisonExperiment:
# sns.set(rc={'figure.figsize': (10, 50)})
bx = sns.catplot(data=df[df['absolute_loss'] < 1], y='absolute_loss', x='application_step', kind='box',
col='noise_level', col_wrap=3, showfliers=False)
plt.show()
directory = Path('output') / 'robustness'
filename = f"absolute_loss_perapplication_boxplot_grid.png"
filepath = directory / filename
plt.savefig(str(filepath))
if print_it:
col_headers = [str(f"10e-{d}") for d in range(noise_levels)]