New Images

This commit is contained in:
Steffen Illium
2022-02-17 13:13:41 +01:00
parent 4f99251e68
commit 5aea4f9f55
10 changed files with 109 additions and 50 deletions

View File

@ -17,6 +17,7 @@ from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor, Compose, Resize
from tqdm import tqdm
if platform.node() == 'CarbonX':
debug = True
print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@")
@ -36,8 +37,8 @@ else:
DIR = None
pass
from network import MetaNet
from functionalities_test import test_for_fixpoints, FixTypes
from network import MetaNet, FixTypes
from functionalities_test import test_for_fixpoints
WORKER = 10 if not debug else 2
debug = False
@ -195,13 +196,14 @@ def flat_for_store(parameters):
if __name__ == '__main__':
self_train = True
training = True
training = False
plotting = True
particle_analysis = True
as_sparse_network_test = True
self_train_alpha = 1
train_to_id_first = False
self_train_alpha = 100
batch_train_beta = 1
weight_hidden_size = 5
weight_hidden_size = 4
residual_skip = True
dropout = 0
@ -209,9 +211,11 @@ if __name__ == '__main__':
data_path.mkdir(exist_ok=True, parents=True)
st_str = f'{"" if self_train else "no_"}st'
a_str = f'_alpha_{self_train_alpha}' if self_train_alpha != 1 else ''
res_str = f'{"" if residual_skip else "_no"}_res'
dr_str = f'{f"_dr_{dropout}" if dropout != 0 else ""}'
run_path = Path('output') / f'mn_{st_str}_{EPOCH}_{weight_hidden_size}{res_str}{dr_str}'
id_str = f'{f"_StToId" if train_to_id_first else ""}'
run_path = Path('output') / f'mn_{st_str}_{EPOCH}_{weight_hidden_size}{a_str}{res_str}{dr_str}{id_str}'
model_path = run_path / '0000_trained_model.zip'
df_store_path = run_path / 'train_store.csv'
@ -245,8 +249,9 @@ if __name__ == '__main__':
metric = torchmetrics.Accuracy()
else:
metric = None
init_st = train_to_id_first and all(x.is_fixpoint == FixTypes.identity_func for x in metanet.particles)
for batch, (batch_x, batch_y) in tqdm(enumerate(d), total=len(d), desc='MetaNet Train - Batch'):
if self_train and is_self_train_epoch:
if (self_train and is_self_train_epoch) or init_st:
# Zero your gradients for every batch!
optimizer.zero_grad()
self_train_loss = metanet.combined_self_train() * self_train_alpha
@ -255,44 +260,46 @@ if __name__ == '__main__':
optimizer.step()
step_log = dict(Epoch=epoch, Batch=batch, Metric='Self Train Loss', Score=self_train_loss.item())
train_store.loc[train_store.shape[0]] = step_log
if train_to_id_first <= epoch:
# Zero your gradients for every batch!
optimizer.zero_grad()
batch_x, batch_y = batch_x.to(DEVICE), batch_y.to(DEVICE)
y = metanet(batch_x)
# loss = loss_fn(y, batch_y.unsqueeze(-1).to(torch.float32))
loss = loss_fn(y, batch_y.to(torch.long)) * batch_train_beta
loss.backward()
# Zero your gradients for every batch!
optimizer.zero_grad()
batch_x, batch_y = batch_x.to(DEVICE), batch_y.to(DEVICE)
y = metanet(batch_x)
# loss = loss_fn(y, batch_y.unsqueeze(-1).to(torch.float32))
loss = loss_fn(y, batch_y.to(torch.long)) * batch_train_beta
loss.backward()
# Adjust learning weights
optimizer.step()
# Adjust learning weights
optimizer.step()
step_log = dict(Epoch=epoch, Batch=batch,
Metric='Task Loss', Score=loss.item())
train_store.loc[train_store.shape[0]] = step_log
if is_validation_epoch:
metric(y.cpu(), batch_y.cpu())
step_log = dict(Epoch=epoch, Batch=batch,
Metric='Task Loss', Score=loss.item())
train_store.loc[train_store.shape[0]] = step_log
if is_validation_epoch:
metric(y.cpu(), batch_y.cpu())
if batch >= 3 and debug:
break
if is_validation_epoch:
metanet = metanet.eval()
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
Metric='Train Accuracy', Score=metric.compute().item())
train_store.loc[train_store.shape[0]] = validation_log
if train_to_id_first <= epoch:
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
Metric='Train Accuracy', Score=metric.compute().item())
train_store.loc[train_store.shape[0]] = validation_log
accuracy = checkpoint_and_validate(metanet, run_path, epoch)
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
Metric='Test Accuracy', Score=accuracy.item())
train_store.loc[train_store.shape[0]] = validation_log
if particle_analysis:
counter_dict = defaultdict(lambda: 0)
# This returns ID-functions
_ = test_for_fixpoints(counter_dict, list(metanet.particles))
for key, value in dict(counter_dict).items():
step_log = dict(Epoch=int(epoch), Batch=BATCHSIZE, Metric=key, Score=value)
train_store.loc[train_store.shape[0]] = step_log
if particle_analysis and (init_st or is_validation_epoch):
counter_dict = defaultdict(lambda: 0)
# This returns ID-functions
_ = test_for_fixpoints(counter_dict, list(metanet.particles))
for key, value in dict(counter_dict).items():
step_log = dict(Epoch=int(epoch), Batch=BATCHSIZE, Metric=key, Score=value)
train_store.loc[train_store.shape[0]] = step_log
if init_st or is_validation_epoch:
for particle in metanet.particles:
weight_log = (epoch, particle.name, *flat_for_store(particle.parameters()))
weight_store.loc[weight_store.shape[0]] = weight_log
@ -355,7 +362,7 @@ if __name__ == '__main__':
fig, ax = plt.subplots(ncols=2)
labels = ['Full Network', 'Sparse, No Identity', 'Sparse, No Other']
colors = sns.color_palette()[:diff_df.shape[0]] if diff_df.shape[0] >= 2 else sns.color_palette()[0]
barplot = sns.barplot(data=diff_df, y='Accuracy', x='Particle Type', color=colors, ax=ax[0])
barplot = sns.barplot(data=diff_df, y='Accuracy', x='Particle Type', palette=colors, ax=ax[0])
# noinspection PyUnboundLocalVariable
for idx, patch in enumerate(barplot.patches):
if idx != 0:
@ -366,7 +373,7 @@ if __name__ == '__main__':
ax[0].set_xlabel('Accuracy')
# ax[0].legend()
ax[1].pie(counter_dict.values(), labels=counter_dict.keys(), colors=sns.color_palette()[:3], )
ax[1].pie(counter_dict.values(), labels=counter_dict.keys(), colors=colors, )
ax[1].set_title('Particle Count for ')
# ax[1].set_xlabel('')